Skip to main content

One-Pot Synthesis of 1,2-Pentanediol via the Bifunctional Catalyst of Ti-MWW Strengthened by CeO2 Nanoparticles

Abstract

Bifunctional mesoporous catalyst CeO2/Ti-MWW with active ceria nanoparticles prepared by ultrasonic impregnation. The mesoporous structure and unique redox property of ceria increased the active site, specific surface area and acid site of Ti-MWW. Compared with traditional multi-step process, a one-pot synthesis of 1,2-pentanediol (1,2-PeD) using CeO2/Ti-MWW as catalyst is developed to effectively shorten the synthetic route and avoid the separation of intermediates. At the same time, 5%CeO2/Ti-MWW exhibited a more excellent highly efficient catalysis for oxidative hydration than Ti-MWW with the 94.2% conversion and 91.07% selectivity. Moreover, the high catalytic activity is attributed to the synergistic strengthening effect between CeO2 and Ti-MWW bicatalysts for realizing an atomically economical and safe process of 1,2-PeD.

Graphic Abstract

Nano catalyst CeO2/Ti-MWW was prepared by ultrasonic impregnation. A green process for efficient preparation of 1,2-PeD from 1-pentene was proposed via CeO2/Ti-MWW.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

References

  1. 1.

    Wang N, Chen Z, Liu L (2018) Acid catalysis dominated suppression of xylose hydrogenation with increasing yield of 1,2-pentanediol in the acid-metal dual catalyst system. Appl Catal A 561:41–48. https://doi.org/10.1016/j.apcata.2018.05.019

    CAS  Article  Google Scholar 

  2. 2.

    Gao F, Liu H, Hu X, Chen J, Huang Z, Xia C (2018) Selective hydrogenolysis of furfuryl alcohol to 1,5- and 1,2-pentanediol over Cu-LaCoO3 catalysts with balanced Cu0-CoO sites. Chin J Catal 39:1711–1723. https://doi.org/10.1016/S1872-2067(18)63110-9

    CAS  Article  Google Scholar 

  3. 3.

    Pisal DS, Yadav GD (2019) Single-step hydrogenolysis of furfural to 1,2-pentanediol using a bifunctional Rh/OMS-2 catalyst. ACS Omega 4:1201–1214. https://doi.org/10.1021/acsomega.8b01595

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Zhu Y, Zhao W, Zhang J, An Z, Ma X, Zhang Z, Jiang Y, Zheng L, Shu X, Song H, Xiang X, He J (2020) Selective activation of C-OH, C–O–C, or C═C in furfuryl alcohol by engineered Pt sites supported on layered double oxides. ACS Catal 10:8032–8041. https://doi.org/10.1021/acscatal.0c01276

    CAS  Article  Google Scholar 

  5. 5.

    Mizugaki T, Yamakawa T, Nagatsu Y, Maeno Z, Mitsudome T, Jitsukawa K, Kaneda K (2014) Direct transformation of furfural to 1,2-pentanediol using a hydrotalcite-supported platinum nanoparticle catalyst. ACS Sustain Chem Eng 2:2243–2247. https://doi.org/10.1021/sc500325g

    CAS  Article  Google Scholar 

  6. 6.

    Ma R, Wu X-P, Tong T, Shao Z-J, Wang Y, Liu X, Xia Q, Gong X-Q (2017) The critical role of water in the ring opening of furfural alcohol to 1,2-pentanediol. ACS Catal 7:333–337. https://doi.org/10.1021/acscatal.6b02845

    CAS  Article  Google Scholar 

  7. 7.

    Yoshioka M, Yokoi T, Tatsumi T (2014) Effectiveness of the reversible structural conversion of MWW zeolite for preparation of interlayer-expanded Ti-MWW with high catalytic performance in olefin epoxidation. Micropor Mesopor Mater 200:11–18. https://doi.org/10.1016/j.micromeso.2014.08.007

    CAS  Article  Google Scholar 

  8. 8.

    Wu L, Tang Z, Yu Y, Yao X, Liu W, Li L, Yan B, Liu Y, He M (2018) Facile synthesis of a high-performance titanosilicate catalyst with controllable defective Ti(OSi)3OH sites. Chem Commun 54:6384–6387. https://doi.org/10.1039/C8CC02794C

    CAS  Article  Google Scholar 

  9. 9.

    Guo S, Zhang Y, Ye Y, Song J, Li M (2020) MWW-type titanosilicate synthesized by simply treating ERB-P zeolite with acidic H2TiF6 and its catalytic performance in a liquid epoxidation of 1-hexene with H2O2. ACS Omega 5:9912–9919. https://doi.org/10.1021/acsomega.0c00184

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lu X, Zhou W-J, Wu H, Liebens A, Wu P (2016) Selective synthesis of ethylene oxide through liquid-phase epoxidation of ethylene with titanosilicate/H2O2 catalytic systems. Appl Catal A 515:51–59. https://doi.org/10.1016/j.apcata.2016.02.001

    CAS  Article  Google Scholar 

  11. 11.

    Zhang J, Jin S, Deng D, Liu W, Tao G, Luo Q, Sun H, Yang W (2021) Insight into the formation of framework titanium species during acid treatment of MWW-type titanosilicate and the effect of framework titanium state on olefin epoxidation. Micropor Mesopor Mater 314:110862. https://doi.org/10.1016/j.micromeso.2020.110862

    CAS  Article  Google Scholar 

  12. 12.

    Zhang M, Lin Z, Huang Q, Zhu Y, Hu H, Chen X (2020) Green synthesis of submicron-sized Ti-rich MWW zeolite powders via a novel mechanochemical dry gel conversion in mixed steam environment. Adv Powder Technol 31:2025–2034. https://doi.org/10.1016/j.apt.2020.02.037

    CAS  Article  Google Scholar 

  13. 13.

    Wang Z, Gao A, Chen P, Hu H, Huang Q, Chen X (2018) The construction of Mo6−δO3−x-supported catalyst for low-temperature propylene gas-phase epoxidation by Cu modification. J Catal 368:120–133. https://doi.org/10.1016/j.jcat.2018.09.024

    CAS  Article  Google Scholar 

  14. 14.

    Shi Y, Chen L, Li J, Hu Q, Ji G, Lu Y, Hu X, Zhu B, Huang W (2021) Co supported on interparticle porosity dominated hierarchical porous TS-1 as highly efficient heterogeneous catalyst for epoxidation of styrene. Chem Phys Lett 762:138116. https://doi.org/10.1016/j.cplett.2020.138116

    CAS  Article  Google Scholar 

  15. 15.

    Charisteidis ID, Triantafyllidis KS (2020) Propylene epoxidation by molecular oxygen using supported silver catalysts: effect of support type, preparation method and promotion with alkali chloride and/or steam. Catal Today 355:654–664. https://doi.org/10.1016/j.cattod.2019.06.057

    CAS  Article  Google Scholar 

  16. 16.

    Zhang X, Wang M, Zhang C, Lu J, Wang Y, Wang F (2016) Epoxide hydrolysis and alcoholysis reactions over crystalline Mo–V–O oxide. RSC Adv 6:70842–70847. https://doi.org/10.1039/C6RA10212C

    CAS  Article  Google Scholar 

  17. 17.

    Yu Y, Tang Z, Wang J, Wang R, Chen Z, Liu H, Shen K, Huang X, Liu Y, He M (2020) Insights into the efficiency of hydrogen peroxide utilization over titanosilicate/H2O2 systems. J Catal 381:96–107. https://doi.org/10.1016/j.jcat.2019.09.045

    CAS  Article  Google Scholar 

  18. 18.

    Yang L, Cai Z, Hao L, Xing Z, Dai Y, Xu X, Pan S, Duan Y, Zou J (2017) Nano Ce2O2S with highly enriched oxygen-deficient Ce3+ sites supported by N and S dual-doped carbon as an active oxygen-supply catalyst for the oxygen reduction reaction. ACS Appl Mater Interfaces 9:22518–22529. https://doi.org/10.1021/acsami.7b04997

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Hu Z, Liu X, Meng D, Guo Y, Guo Y, Lu G (2016) Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation. ACS Catal 6:2265–2279. https://doi.org/10.1021/acscatal.5b02617

    CAS  Article  Google Scholar 

  20. 20.

    Ho C, Yu J, Kwong T, Mak A, Lai S (2005) Morphology-controllable synthesis of mesoporous CeO 2 nano and microstructures. Chem Mater 17:4514–4522. https://doi.org/10.1021/cm0507967

    CAS  Article  Google Scholar 

  21. 21.

    Chavadej S, Rojluechai S, Schwank JW, Meeyoo V (2008) Chapter 9—effect of support on ethylene epoxidation on Ag, Au, and Au-Ag catalysts. In: Oyama ST (ed) Mechanisms in homogeneous and heterogeneous epoxidation catalysis. Elsevier, Amsterdam, pp 283–296

    Chapter  Google Scholar 

  22. 22.

    Govinda-Rao B, Sudarsanam P, Nallappareddy PRG, Yugandhar Reddy M, Venkateshwar Rao T, Reddy BM (2017) Selective allylic oxidation of cyclohexene catalyzed by nanostructured Ce-Sm-Si materials. Catal Commun 101:57–61. https://doi.org/10.1016/j.catcom.2017.07.027

    CAS  Article  Google Scholar 

  23. 23.

    Yan H, He K, Samek IA, Jing D, Nanda MG, Stair PC, Notestein JM (2021) Tandem In2O3–Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion. Science 371:1257. https://doi.org/10.1126/science.abd4441

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Pei C, Gong J (2021) Tandem catalysis at nanoscale. Science 371:1203. https://doi.org/10.1126/science.abh0424

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Fan W, Wu P, Tatsumi T (2008) Unique solvent effect of microporous crystalline titanosilicates in the oxidation of 1-hexene and cyclohexene. J Catal 256:62–73. https://doi.org/10.1016/j.jcat.2008.03.001

    CAS  Article  Google Scholar 

  26. 26.

    Lu X, Xu H, Yan J, Zhou W-J, Liebens A, Wu P (2018) One-pot synthesis of ethylene glycol by oxidative hydration of ethylene with hydrogen peroxide over titanosilicate catalysts. J Catal 358:89–99. https://doi.org/10.1016/j.jcat.2017.12.002

    CAS  Article  Google Scholar 

  27. 27.

    Wu P, Tatsumi T, Komatsu T, Yashima T (2001) A novel titanosilicate with MWW structure: II. Catalytic properties in the selective oxidation of alkenes. J Catal 202:245–255. https://doi.org/10.1006/jcat.2001.3278

    CAS  Article  Google Scholar 

  28. 28.

    Wu P, Tatsumi T, Komatsu T, Yashima T (2001) A novel titanosilicate with MWW structure. I. Hydrothermal synthesis, elimination of extraframework titanium, and characterizations. J Phys Chem B 105:2897–2905. https://doi.org/10.1021/jp002816s

    CAS  Article  Google Scholar 

  29. 29.

    Wu P, Miyaji T, Liu Y, He M, Tatsumi T (2005) Synthesis of Ti-MWW by a dry-gel conversion method. Catal Today 99:233–240. https://doi.org/10.1016/j.cattod.2004.09.045

    CAS  Article  Google Scholar 

  30. 30.

    Yu Y, Tang Z, Liu W, Wang J, Chen Z, Shen K, Wang R, Liu H, Huang X, Liu Y (2019) Enhanced catalytic oxidation performance of K+-modified Ti-MWW through selective breaking of interfacial hydrogen-bonding interactions of H2O2. Appl Catal A 587:117270. https://doi.org/10.1016/j.apcata.2019.117270

    CAS  Article  Google Scholar 

  31. 31.

    Yu H, Shang F, Chu Q, Wang P, Wang M, Zhu H, Song F, Yang H, Diao T (2020) Cleaner and atomic economy production of hydroxylamine hydrochloride under solvent-free conditions through process intensification. J Clean Prod 269:122187. https://doi.org/10.1016/j.jclepro.2020.122187

    CAS  Article  Google Scholar 

  32. 32.

    Wu H, Wang L, Zhang H, Liu Y, Wu P (2006) Highly efficient and clean synthesis of 3,4-epoxytetrahydrofuran over a novel titanosilicate catalyst, Ti-MWW. Green Chem. https://doi.org/10.1039/b511594a

    Article  Google Scholar 

  33. 33.

    Dauscher A, Hilaire L, Le Normand F, Müller W, Maire G, Vasquez A (1990) Characterization by XPS and XAS of supported Pt/TiO2·CeO2 catalysts. Surf Interface Anal 16:341–346. https://doi.org/10.1002/sia.740160173

    CAS  Article  Google Scholar 

  34. 34.

    Leppelt R, Schumacher B, Plzak V, Kinne M, Behm RJ (2006) Kinetics and mechanism of the low-temperature water–gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere. J Catal 244:137–152. https://doi.org/10.1016/j.jcat.2006.08.020

    CAS  Article  Google Scholar 

  35. 35.

    Huo Y, Zhang Y, Xu W, Tang K, Lu X, Ma R, Fu Y, Zhu W (2020) Acid-modulated synthesis of Ti-MWW zeolites with rich framework Ti species for efficient epoxidation. Ind Eng Chem Res 59:19929–19937. https://doi.org/10.1021/acs.iecr.0c03518

    CAS  Article  Google Scholar 

  36. 36.

    Bregante DT, Thornburg NE, Notestein JM, Flaherty DW (2018) Consequences of confinement for alkene epoxidation with hydrogen peroxide on highly dispersed group 4 and 5 metal oxide catalysts. ACS Catal 8:2995–3010. https://doi.org/10.1021/acscatal.7b03986

    CAS  Article  Google Scholar 

  37. 37.

    Zhuo Z, Wang L, Zhang X, Wu L, Liu Y, He M (2015) Insights into the key to highly selective synthesis of oxime via ammoximation over titanosilicates. J Catal 329:107–118. https://doi.org/10.1016/j.jcat.2015.04.030

    CAS  Article  Google Scholar 

  38. 38.

    Lei Q, Wang C, Dai W, Wu G, Guan N, Hunger M, Li L (2021) Tandem Lewis acid catalysis for the conversion of alkenes to 1,2-diols in the confined space of bifunctional TiSn-beta zeolite. Chin J Catal 42:1176–1184. https://doi.org/10.1016/S1872-2067(20)63734-2

    CAS  Article  Google Scholar 

  39. 39.

    Nie X, Ji X, Chen Y, Guo X, Song C (2017) Mechanistic investigation of propylene epoxidation with H2O2 over TS-1: active site formation, intermediate identification, and oxygen transfer pathway. Mol Catal 441:150–167. https://doi.org/10.1016/j.mcat.2017.08.011

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support from the Natural Science Foundation of ShanDong Province (ZR2020MB130) and Integrated university and city development program of Zibo (2019ZBXC342).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qingyan Chu or Ming Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 447 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Diao, T., Chu, Q., Du, D. et al. One-Pot Synthesis of 1,2-Pentanediol via the Bifunctional Catalyst of Ti-MWW Strengthened by CeO2 Nanoparticles. Catal Lett (2021). https://doi.org/10.1007/s10562-021-03804-4

Download citation

Keywords

  • Cerium oxide
  • Ti-MWW
  • Oxidative hydration
  • 1,2-Pentanediol
  • Tandem catalysis