Skip to main content

One-Step Synthesis of High-Silica ZSM-5 Zeolite with Less Internal Silicon Hydroxyl Groups: Highly Stable Catalyst for Methanol to Propene Reaction


High-silica ZSM-5 zeolite with less internal silicon hydroxyl groups was directly synthesized through a one-step hydrothermal crystallization method. The physicochemical properties of high-silica ZSM-5 zeolite with less internal silicon hydroxyl groups together with its catalytic capability for methanol to propene reaction were roundly compared with that of commercial ZSM-5 zeolite and another high-silica ZSM-5 zeolite with similar acid distribution but different hydroxyl distribution to it. The results show that high-silica ZSM-5 zeolite with less internal silicon hydroxyl groups has good crystallinity, uniform crystal size and moderate acidity, which is a highly stable catalyst for methanol to propene reaction. Based on the characterization and reaction results, the high stability of high-silica ZSM-5 zeolite with less internal silicon hydroxyl groups in methanol to propene reaction proves that the distribution of silicon hydroxyl groups plays a significant role in the deactivation of ZSM-5 zeolite.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Phung TK, Pham TLM, Vu KB, Busca G (2021) (Bio) Propylene production processes: a critical review. J Environ Chem Eng 6:105673–105686

    Article  Google Scholar 

  2. 2.

    Lavrenov AV, Saifulina LF, Buluchevskii EA, Bogdanets EN (2015) Propylene production technology: today and tomorrow. Catal in Ind 7:175–187

    Article  Google Scholar 

  3. 3.

    Koempel H, Liebner W (2007) Lurgi’s methanol to propylene (MTP®) report on a successful commercialisation. Stud Surf Sci Catal 167:261–267

    Article  Google Scholar 

  4. 4.

    Yang M, Fan D, Wei Y, Tian P, Liu Z (2019) Recent progress in methanol-to-olefins (MTO) catalysts. Adv Mater 31:1902181–1902195

    CAS  Article  Google Scholar 

  5. 5.

    Zhou Z, Jiang R, Chen X, Wang X, Hou H (2021) One-step synthesis of hierarchical lamellar H-ZSM-5 zeolite and catalytic performance of methanol to olefin. J Solid State Chem 298:122132–122140

    CAS  Article  Google Scholar 

  6. 6.

    Goodarzi F, Herrero IP, Kalantzopoulos GN, Svelle S, Lazzarini A, Beato P, Olsbye U, Kegnæs S (2020) Synthesis of mesoporous ZSM-5 zeolite encapsulated in an ultrathin protective shell of silicalite-1 for MTH conversion. Micropor Mesopor Mater 292:109730–109739

    CAS  Article  Google Scholar 

  7. 7.

    Cui N, Guo H, Zhou J, Li L, Guo L, Hua Z (2020) Regulation of framework Al distribution of high-silica hierarchically structured ZSM-5 zeolites by boron-modification and its effect on materials catalytic performance in methanol-to-propylene reaction. Micropor Mesopor Mater 306:110411–110419

    CAS  Article  Google Scholar 

  8. 8.

    Beheshti MS, Behzad M, Ahmadpour J, Arabi H (2020) Modification of H-[B]-ZSM-5 zeolite for methanol to propylene (MTP) conversion: investigation of extrusion and steaming treatments on physicochemical characteristics and catalytic performance. Micropor Mesopor Mater 291:109699–109713

    Article  Google Scholar 

  9. 9.

    Feng R, Wang X, Lin J, Li Z, Hou K, Yan X, Hu X, Yan Z, Rood MJ (2018) Two-stage glucose-assisted crystallization of ZSM-5 to improve methanol to propylene (MTP). Micropor Mesopor Mater 270:57–66

    CAS  Article  Google Scholar 

  10. 10.

    Yuan D, Sang Y, Xing A, Wang C, Miao P, Sun Q (2019) Tuning of Magnesium distribution in ZSM-5 via different impregnation methods and its effect on methanol to propene reaction. Ind Eng Chem Res 58:5112–5120

    CAS  Article  Google Scholar 

  11. 11.

    Ding J, Chen P, Fan S, Zhang Z, Han L, Zhao G, Liu Y, Lu Y (2017) Microfibrous-structured SS-fiber@ meso-HZSM-5 catalyst for methanol-to-propylene: Steam-assisted crystallization synthesis and insight into the stability enhancement. ACS Sustain Chem Eng 5:1840–1853

    CAS  Article  Google Scholar 

  12. 12.

    Li J, Liu M, Guo X, Xu S, Wei Y, Liu Z, Song C (2017) Interconnected hierarchical ZSM-5 with tunable acidity prepared by a dealumination-realumination process: a superior MTP catalyst. ACS Appl Mater Inter 9:26096–26106

    CAS  Article  Google Scholar 

  13. 13.

    Sousa ZSB, Luna AS, Zotin FMZ, Henriques CA (2021) Methanol-to-olefin conversion over ZSM-5: influence of zeolite chemical composition and experimental conditions on propylene formation. Chem Eng Commun 3:1–13

    Article  Google Scholar 

  14. 14.

    Rostamizadeh M, Taeb A (2015) Highly selective Me-ZSM-5 catalyst for methanol to propylene (MTP). J Ind Eng Chem 27:297–306

    CAS  Article  Google Scholar 

  15. 15.

    Yang Y, Sun C, Du J, Yue Y, Hua W, Zhang C, Shen W, Xu H (2012) The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catal Commun 24:44–47

    Article  Google Scholar 

  16. 16.

    Bleken FL, Chavan S, Olsbye U, Boltz M, Ocampo F, Louis B (2012) Conversion of methanol into light olefins over ZSM-5 zeolite: Strategy to enhance propene selectivity. Appl Catal A-Gen 447:178–185

    Article  Google Scholar 

  17. 17.

    Wei R, Li C, Yang C, Shan H (2011) Effects of ammonium exchange and Si/Al ratio on the conversion of methanol to propylene over a novel and large partical size ZSM-5. J Na Gas Chem 20:261–265

    CAS  Article  Google Scholar 

  18. 18.

    Liu J, Zhang C, Shen Z, Hua W, Tang Y, Shen W, Yue Y, Xu H (2009) Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst. Catal Commun 10:1506–1509

    CAS  Article  Google Scholar 

  19. 19.

    Rostamizadeh M, Yaripour F (2017) Dealumination of high silica H-ZSM-5 as long-lived nanocatalyst for methanol to olefin conversion. J Taiwan Inst Chem E 71:454–463

    CAS  Article  Google Scholar 

  20. 20.

    Ahmadpour J, Taghizadeh M (2015) Catalytic conversion of methanol to propylene over high-silica mesoporous ZSM-5 zeolites prepared by different combinations of mesogenous templates. J Nat Gas Sci Eng 23:184–194

    CAS  Article  Google Scholar 

  21. 21.

    Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W, Xie Z, Hua W, Gao Z (2008) Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5. J Catal 258:243–249

    CAS  Article  Google Scholar 

  22. 22.

    Chang CD, Chu CTW, Socha RF (1984) Methanol conversion to olefins over ZSM-5: Effect of temperature and zeolite SiO2Al2O3. J Catal 86:289–296

    CAS  Article  Google Scholar 

  23. 23.

    Barbera K, Bonino F, Bordiga S, Janssens TVW, Beato P (2011) Structure-deactivation relationship for ZSM-5 catalysts governed by framework defects. J Catal 280:196–205

    CAS  Article  Google Scholar 

  24. 24.

    Lee K, Lee S, Jun Y, Choi M (2017) Cooperative effects of zeolite mesoporosity and defect sites on the amount and location of coke formation and its consequence in deactivation. J Catal 347:222–230

    CAS  Article  Google Scholar 

  25. 25.

    Burel L, Tuel A (2013) Nanozeolites: new strategies for designing ultra small silicalite crystals with very few framework defects. Micropor Mesopor Mater 174:90–99

    CAS  Article  Google Scholar 

  26. 26.

    Xu T, Zhang Q, Song H, Wang Y (2012) Fluoride-treated HZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides. J Catal 295:232–241

    CAS  Article  Google Scholar 

  27. 27.

    Treacy MMJ, Higgins JB (2007) Collection of simulated XRD powder patterns for zeolites fifth (5th), revised. Elsevier

    Google Scholar 

  28. 28.

    Yang Q, Kong M, Fan Z, Meng X, Fei J, Xiao FS (2012) Aluminum fluoride modified HZSM-5 zeolite with superior performance in synthesis of dimethyl ether from methanol. Energ Fuel 26:4475–4480

    CAS  Article  Google Scholar 

  29. 29.

    Cychosz KA, Guillet-Nicolas R, García-Martínez J, Thommes M (2017) Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem Soc Rev 46:389–414

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Hu Z, Zhang H, Wang L, Zhang H, Zhang Y, Xu H, Shen W, Tang Y (2014) Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catal Sci Technol 4:2891–2895

    CAS  Article  Google Scholar 

  31. 31.

    Mitchell S, Michels NL, Kunze K, Pérez-Ramírez J (2012) Visualization of hierarchically structured zeolite bodies from macro to nano length scales. Nat Chem 4:825–831

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Groen JC, Peffer LA, Moulijn JA, Pérez-Ramírez J (2005) Mechanism of hierarchical porosity development in MFI zeolites by desilication: The role of aluminium as a pore-directing agent. Chem-Eur J 11:4983–4994

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Firoozi M, Baghalha M, Asadi M (2009) The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction. Catal Commun 10:1582–1585

    CAS  Article  Google Scholar 

  34. 34.

    Lago RM, Haag WO, Mikovsky RJ, Olson DH, Hellring SD, Schmitt KD, Kerr GT (1986) The nature of the catalytic sites in HZSM-5-activity enhancement. Elsevier

    Book  Google Scholar 

  35. 35.

    Othman I, Mohamed RM, Ibrahim IA, Mohamed MM (2006) Synthesis and modification of ZSM-5 with manganese and lanthanum and their effects on decolorization of indigo carmine dye. Appl Catal A-Gen 299:95–102

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (21978155) and the Postdoctoral Applied Research Project of Qingdao (01020240113).

Author information



Corresponding authors

Correspondence to Dongmei Xu or Chunyi Li.

Ethics declarations

Conflict of interest

There are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12851 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Yuan, C., Zhong, P. et al. One-Step Synthesis of High-Silica ZSM-5 Zeolite with Less Internal Silicon Hydroxyl Groups: Highly Stable Catalyst for Methanol to Propene Reaction. Catal Lett (2021).

Download citation


  • Methanol
  • Propene
  • High-silica ZSM-5 zeolite
  • Silicon hydroxyl groups
  • Deactivation