Skip to main content

Preparation of Alkyl Levulinates from Xylose Over Modified Bifunctional Mesoporous Zirconium Phosphate Catalysts

Abstract

Alkyl levulinates (AL), which are important biomass derivatives, have the potential of conversion into different valuable compounds. This study addressed the production of alkyl levulinate from xylose by applying mesoporous zirconium phosphates (AL-MZP-Pr-SO3H, MZP-Pr-SO3H), which served as good heterogeneous catalysts. The characterization of these catalysts was done using FT-IR spectroscopy, low and wide-angle XRD, N2 adsorption–desorption, ICP, TEM, and SEM. Then the impact of a large number of parameters, like the temperature of reaction, the time of reaction, the catalyst amount, and xylose initial amount was probed. The findings revealed that the maximum n-butyl levulinate yield was 82% at the temperature of 170 °C, after 6 h; meanwhile, the maximum ethyl levulinate yield was 49% at 150 °C, after 6 h. The catalysts can be easily separated from the reaction mixture and regenerated by a simple activation step, with the possibility of reusing at least four times without significant reduction in the catalytic activity.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz MJ, Linhardt RJ (2015) Chem Rev 115:6811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Hafizi H, Chermahini AN, Saraji M, Mohammadnezhad G (2016) Chem Eng J 294:380

    CAS  Article  Google Scholar 

  3. 3.

    Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Science 315:804

    CAS  Article  Google Scholar 

  4. 4.

    Kang S, Fu J, Zhang G (2018) Renew Sust Energ Rev 94:340

    CAS  Article  Google Scholar 

  5. 5.

    Dhyani V, Bhaskar T (2018) Renew Energ 129:695

    CAS  Article  Google Scholar 

  6. 6.

    Rackemann DW, Doherty WO (2011) Biofuel Bioprod Biorefin 5:198

    CAS  Article  Google Scholar 

  7. 7.

    Mohammadbagheri Z, Chermahini AN (2020) Renew Energ 147:2229

    CAS  Article  Google Scholar 

  8. 8.

    Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164

    CAS  Article  Google Scholar 

  9. 9.

    Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Morone A, Apte M, Pandey R (2015) Renew Sust Energ Rev 51:548

    CAS  Article  Google Scholar 

  11. 11.

    Bozell JJ, Moens L, Elliott D, Wang Y, Neuenscwander G, Fitzpatrick S, Bilski R, Jarnefeld J (2000) Resour Recycl 28:227

    Article  Google Scholar 

  12. 12.

    Leonard RH (1956) J Ind Eng Chem 48:1330

    Article  Google Scholar 

  13. 13.

    Cirujano F, Corma A, i Xamena FL, (2015) Chem Eng J 124:52

    CAS  Article  Google Scholar 

  14. 14.

    Badgujar KC, Badgujar VC, Bhanage BM (2020) Fuel Process. Technol. 197:106213

  15. 15.

    Guo H, Lian Y, Yan L, Qi X, Smith RL (2013) Green Chem 15:2167

    CAS  Article  Google Scholar 

  16. 16.

    Jacobson K, Gopinath R, Meher LC, Dalai AK (2008) Appl Catal B 85:86

    CAS  Article  Google Scholar 

  17. 17.

    Bertarione S, Bonino F, Cesano F, Damin A, Scarano D, Zecchina A (2008) J Phys Chem B 112:2580

    CAS  Article  Google Scholar 

  18. 18.

    Zhou L, He Y, Ma L, Jiang Y, Huang Z, Yin L, Gao J (2018) Bioresour Technol 247:568

    CAS  Article  Google Scholar 

  19. 19.

    Melero J, Morales G, Iglesias J, Paniagua M, Hernández B, Penedo S (2013) Appl Catal A-Gen 466:116

    CAS  Article  Google Scholar 

  20. 20.

    Song D, An S, Sun Y, Guo Y (2016) J Catal 333:184

    CAS  Article  Google Scholar 

  21. 21.

    Hu X, Song Y, Wu L, Gholizadeh M, Li C-Z (2013) ACS Sustain Chem Eng 1:1593

    CAS  Article  Google Scholar 

  22. 22.

    Hu X, Jiang S, Wu L, Wang S, Li C-Z (2017) ChemComm 53:2938

    CAS  Google Scholar 

  23. 23.

    Hu X, Lievens C, Li CZ (2012) Chemsuschem 5:1427

    CAS  Article  Google Scholar 

  24. 24.

    Wang C, Zhang Q, Chen Y, Zhang X, Xu F (2018) ACS Sustain Chem Eng 6:3154

    CAS  Article  Google Scholar 

  25. 25.

    Guo H, Abe Y, Qi X, Smith RL Jr (2020) React. Chem Eng 5:1759

    CAS  Google Scholar 

  26. 26.

    Xiao H, Dai W, Kan Y, Clearfield A, Liang H (2015) Appl Surf Sci 329:384

    CAS  Article  Google Scholar 

  27. 27.

    Kaushal S, Sharma PK, Mittal SK, Singh P (2015) Colloids Interface. Sci Commun 7:1

    CAS  Google Scholar 

  28. 28.

    Mosby BM, Díaz A, Clearfield A (2014) Dalton Trans 43:10328

    CAS  Article  Google Scholar 

  29. 29.

    Martí AA, Colón JL (2003) Inorg Chem 42:2830

    Article  CAS  Google Scholar 

  30. 30.

    Cheng L, Guo X, Song C, Yu G, Cui Y, Xue N, Peng L, Guo X, Ding W (2013) RSC Adv 3:23228

    CAS  Article  Google Scholar 

  31. 31.

    Jain A, Shore AM, Jonnalagadda SC, Ramanujachary KV, Mugweru A (2015) Appl Catal A-Gen 489:72

    CAS  Article  Google Scholar 

  32. 32.

    Weingarten R, Kim YT, Tompsett GA, Fernández A, Han KS, Hagaman EW, Conner WC Jr, Dumesic JA, Huber GW (2013) J Catal 304:123

    CAS  Article  Google Scholar 

  33. 33.

    Liu B, Ba C, Jin M, Zhang Z (2015) Ind Crops Prod 76:781

    CAS  Article  Google Scholar 

  34. 34.

    Das SK, Bhunia MK, Sinha AK, Bhaumik A (2011) ACS Catal 1:493

    CAS  Article  Google Scholar 

  35. 35.

    Zima V, Svoboda J, Melánová K, Beneš L, Casciola M, Sganappa M, Brus J, Trchová M (2010) Solid State Ion 181:705

    CAS  Article  Google Scholar 

  36. 36.

    Sinhamahapatra A, Sutradhar N, Roy B, Tarafdar A, Bajaj HC, Panda AB (2010) Appl Catal A-Gen 385:22

    CAS  Article  Google Scholar 

  37. 37.

    Mohammadbagheri Z, Najafi Chermahini A (2018) J Ind Eng Chem 62:401

    CAS  Article  Google Scholar 

  38. 38.

    Dash SS, Sahu MK, Sahu E, Patel RK (2015) New J Chem 39:7300

    CAS  Article  Google Scholar 

  39. 39.

    Emeis C (1993) J Catal 141:347

    CAS  Article  Google Scholar 

  40. 40.

    Babaei Z, Chermahini AN, Dinari M (2018) Chem Eng J 352:45

    CAS  Article  Google Scholar 

  41. 41.

    Sinhamahapatra A, Sutradhar N, Pahari S, Bajaj HC, Panda AB (2011) Appl Catal A-Gen 394:93

    CAS  Article  Google Scholar 

  42. 42.

    Hogarth WH, da Costa JCD, Drennan J, Lu GM (2005) J Mater Chem 15:754

    CAS  Article  Google Scholar 

  43. 43.

    Casciola M, Capitani D, Donnadio A, Munari G, Pica M (2010) Inorg Chem 49:3329

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Jamali F, Najafi Chermahini A, Ayashi N (2021) Inorg Chem 5:149

    Google Scholar 

  45. 45.

    Saravanan K, Park KS, Jeon S, Bae JW (2018) ACS Omega 3:808

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  46. 46.

    Nazer S, Chermahini AN, Monjezi BH, Dabbagh HA (2020) J Taiwan Inst Chem Eng 114:168

    CAS  Article  Google Scholar 

  47. 47.

    Peng L, Lin L, Li H, Yang Q (2011) Appl Energy 88:4590

    CAS  Article  Google Scholar 

  48. 48.

    Song D, An S, Lu B, Guo Y, Leng J (2015) Appl Catal B 179:445

    CAS  Article  Google Scholar 

  49. 49.

    Saravanamurugan S, Riisager A (2012) Catal Commun 17:71

    CAS  Article  Google Scholar 

  50. 50.

    Zhang Z, Dong K, Zhao Z (2011) Chemsuschem 4:112

    CAS  Article  Google Scholar 

  51. 51.

    Zhou X, Li ZX, Zhang C, Gao XP, Dai YZ, Wang GY (2016) J Mol Catal 417:71

    CAS  Article  Google Scholar 

  52. 52.

    Neves P, Antunes MM, Russo PA, Abrantes JP, Lima S, Fernandes A, Pillinger M, Rocha SM, Ribeiro MF, Valente AA (2013) Green Chem 15:3367

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate Isfahan University of Technology (Iran) for financially supporting this work (Research Council Grant).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alireza Najafi Chermahini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 147 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dookheh, M., Najafi Chermahini, A. & Saraji, M. Preparation of Alkyl Levulinates from Xylose Over Modified Bifunctional Mesoporous Zirconium Phosphate Catalysts. Catal Lett (2021). https://doi.org/10.1007/s10562-021-03792-5

Download citation

Keyword

  • Alkyl levulinates
  • Mesoporous zirconium phosphate (MZP)
  • Biomass conversion
  • Xylose
  • Catalytic dehydration