Skip to main content

Kinetic Model for the Manufacturing of 1,2-Propanediol (1,2-PDO) via Hydrogenolysis of Bio-glycerol Over Layered Double Hydroxide (LDH) Derived Cu0.45Zn0.15Mg5.4Al2O9 Catalyst in an Autoclave Reactor

Abstract

Kinetic model for the formation of 1,2-propanediol via liquid-phase glycerol hydrogenolysis was developed in presence of a layered double hydroxide (LDH) precursor derived Cu0.45Zn0.15Mg5.4Al2O9 catalyst. A new reaction pathway of glycerol hydrogenolysis is proposed. The experimental concentrations of feed and products were fitted in the Langmuir–Hinshelwood–Hougen–Watson (LHHW) model. The model equations were solved by ode23s in MATLAB. The kinetic variables were estimated by minimizing the residual sum of squares between the experimental and model-predicted concentrations of feed and products. Results suggested that the LHHW model satisfactorily correlated with the experimental data.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Wang Y, Zhou J, Guo X (2015) Catalytic hydrogenolysis of glycerol to propanediol: a review. RSC Adv 5:74611–74628

    CAS  Article  Google Scholar 

  2. 2.

    Nijhuis TA, Makkee M, Moulijn JA et al (2006) The production of propene oxide: catalytic processes and recent developments. Ind Eng Chem Res 45:3447–3459

    CAS  Article  Google Scholar 

  3. 3.

    Nakagawa Y, Tomishige K (2011) Heterogeneous catalysis of the glycerol hydrogenolysis. Catal Sci Technol 1:179

    CAS  Article  Google Scholar 

  4. 4.

    Ma L, He D (2010) Influence of catalyst pretreatment on catalytic properties and performances of Ru–Re/SiO2 in glycerol hydrogenolysis to propanediols. Catal Today 149:148–156

    CAS  Article  Google Scholar 

  5. 5.

    Yuan Z, Wang L, Wang J et al (2011) Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Appl Catal B Environ 101:431–440

    CAS  Article  Google Scholar 

  6. 6.

    Dasari MA, Kiatsimkul PP, Sutterlin WR et al (2005) Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A Gen 281:225–231

    CAS  Article  Google Scholar 

  7. 7.

    Mondal S, Janardhan R, Meena ML et al (2017) Highly active Cu–Zn–Mg–Al–O catalyst derived from layered double hydroxides (LDHs) precursor for selective hydrogenolysis of glycerol to 1,2-propanediol. J Environ Chem Eng 5:5695–5706

    CAS  Article  Google Scholar 

  8. 8.

    Vasiliadou ES, Lemonidou AA (2013) Kinetic study of liquid-phase glycerol hydrogenolysis over Cu/SiO2 catalyst. Chem Eng J 231:103–112

    CAS  Article  Google Scholar 

  9. 9.

    Lahr DG, Shanks BH (2003) Kinetic analysis of the hydrogenolysis of lower polyhydric alcohols: glycerol to glycols. Ind Eng Chem Res 42:5467–5472

    CAS  Article  Google Scholar 

  10. 10.

    Sharma RV, Kumar P, Dalai AK (2014) Selective hydrogenolysis of glycerol to propylene glycol by using Cu:Zn:Cr:Zr mixed metal oxides catalyst. Appl Catal A Gen 477:147–156

    CAS  Article  Google Scholar 

  11. 11.

    Gandarias I, Fernandez SG, El Doukkali M et al (2013) Physicochemical study of glycerol hydrogenolysis over a Ni–Cu/Al2O3 catalyst using formic acid as the hydrogen source. Top Catal 56:995–1007. https://doi.org/10.1007/s11244-013-0063-9

    CAS  Article  Google Scholar 

  12. 12.

    Jiang T, Ren MX, Chen SS et al (2014) Kinetics of hydrogenolysis of glycerol to ethylene glycol over Raney Ni catalyst. Adv Mater Res 906:103–111

    Article  Google Scholar 

  13. 13.

    Zhou Z, Li X, Zeng T et al (2010) Kinetics of hydrogenolysis of glycerol to propylene glycol over Cu–ZnO–Al2O3 catalysts. Chin J Chem Eng 18:384–390

    CAS  Article  Google Scholar 

  14. 14.

    Torres A, Roy D, Subramaniam B et al (2010) Kinetic modeling of aqueous-phase glycerol hydrogenolysis in a batch slurry reactor. Ind Eng Chem Res 49:10826–10835

    CAS  Article  Google Scholar 

  15. 15.

    Pandhare NN, Pudi SM, Mondal S et al (2018) Development of kinetic model for hydrogenolysis of glycerol over Cu/MgO catalyst in a slurry reactor. Ind Eng Chem Res 57:101–110

    CAS  Article  Google Scholar 

  16. 16.

    Pankajakshan A, Pudi SM, Biswas P (2018) Acetylation of glycerol over highly stable and active sulfated alumina catalyst: reaction mechanism, kinetic modeling and estimation of kinetic parameters. Int J Chem Kinet 50:98–111

    CAS  Article  Google Scholar 

  17. 17.

    Kolitcheff S, Jolimaitre E, Hugon A et al (2017) Tortuosity of mesoporous alumina catalyst supports: influence of the pore network organization. Microporous Mesoporous Mater 248:91–98

    CAS  Article  Google Scholar 

  18. 18.

    Meher LC, Gopinath R, Naik SN et al (2009) Catalytic hydrogenolysis of glycerol to propylene glycol over mixed oxides derived from a hydrotalcite-type precursor. Ind Eng Chem Res 48:1840–1846

    CAS  Article  Google Scholar 

  19. 19.

    Balaraju M, Rekha V, Prasad PSS et al (2009) Influence of solid acids as co-catalysts on glycerol hydrogenolysis to propylene glycol over Ru/C catalysts. Appl Catal A Gen 354:82–87

    CAS  Article  Google Scholar 

  20. 20.

    Miyazawa T, Kusunoki Y, Kunimori K et al (2006) Glycerol conversion in the aqueous solution under hydrogen over Ru/C+ an ion-exchange resin and its reaction mechanism. J Catal 240:213–221

    CAS  Article  Google Scholar 

  21. 21.

    Xia S, Nie R, Lu X et al (2012) Hydrogenolysis of glycerol over Cu0.4/Zn5.6xMgxAl2O8.6 catalysts: the role of basicity and hydrogen spillover. J Catal 296:1–11

    CAS  Article  Google Scholar 

  22. 22.

    Xia S, Yuan Z, Wang L et al (2011) Hydrogenolysis of glycerol on bimetallic Pd–Cu/solid-base catalysts prepared via layered double hydroxides precursors. Appl Catal A Gen 403:173–182

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the DEAN, SRIC, IIT Roorkee, Uttarakhand, India for supporting this work via SRIC-Fund under F.I.G (Scheme-A). The fellowship awarded by the MHRD, Government of India to carry out this study at IIT Roorkee is highly acknowledged. The contribution of Dr. Smita Mondal to complete the revision of this manuscript is highly acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prakash Biswas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1755 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meena, M.L., Pandey, D.K., Malviya, H. et al. Kinetic Model for the Manufacturing of 1,2-Propanediol (1,2-PDO) via Hydrogenolysis of Bio-glycerol Over Layered Double Hydroxide (LDH) Derived Cu0.45Zn0.15Mg5.4Al2O9 Catalyst in an Autoclave Reactor. Catal Lett (2021). https://doi.org/10.1007/s10562-021-03791-6

Download citation

Keywords

  • Glycerol hydrogenolysis
  • Autoclave reactor
  • LDH catalyst
  • 1,2-PDO
  • Kinetic model