Skip to main content

Structure-Performance Evolution of Cobalt-Ammonia Activated Carbon Catalyst for Ethylene Oligomerization


The structure-performance evolution of Co/N-AC catalyst during ethylene oligomerization was investigated in detail. It was found that the catalytic activity sharply decreased in the first 30 h with the ethylene conversion decreasing from 64 to 4%. Butene selectivity increased gradually in the first 10 h then remained about 74%, while the selectivity for hexene and octene exhibited an opposite trend. The ratio of α-olefin to isomers for butene increased greatly with time on stream and most of the generated butene was 1-butene. Based on the structure characterization at different reaction stages, CoOx was suggested to be major active phase and the coverage of long-chain hydrocarbons as well as the loss of surface CoOx active sites due to size growth of Co3O4 nanoparticles were the main reasons for catalytic deactivation.

Graphic Abstract

The structure-performance evolution of Co/N-AC catalyst during ethylene oligomerization was investigated and the coverage of long-chain hydrocarbons as well as the loss of surface CoOx active sites due to size growth of Co3O4 nanoparticles were the main reasons for catalytic deactivation

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Czaja K, Bialek M (2002) Polimery 47:685

    CAS  Article  Google Scholar 

  2. 2.

    Na Y, Dai S, Chen C (2018) Macromolecules 51:4040

    CAS  Article  Google Scholar 

  3. 3.

    Pandey GC (1995) Process Control Qual 7:173

    CAS  Google Scholar 

  4. 4.

    Fook MVL, Souza AG, Trindade MFS, Conceicao MM, Santos JCO, Prasad S, Fernandes VJ, Crispim SCL (2004) J Therm Anal Calorim 75:513

    CAS  Article  Google Scholar 

  5. 5.

    Yamamoto Y, Ikeda M, Tanaka Y (2004) IEEE Trans Dielectr Electr Insul 11:881

    CAS  Article  Google Scholar 

  6. 6.

    Yoshida H, Yamauchi K, Matsui T (1999) Kobunshi Ronbunshu 56:869

    CAS  Article  Google Scholar 

  7. 7.

    Liao H, Gao J, Zhong L, Gao HY, Wu Q (2019) Chin J Polym Sci 37:959

    CAS  Article  Google Scholar 

  8. 8.

    Mahmood Q, Sun WH (2018) R Soc open sci 5:e180367

    Article  CAS  Google Scholar 

  9. 9.

    Prut EV, Nedorezova PM, Klyamkina AN, Zhorina LA, Kuznetsova OP, Medintseva TI (2011) Dokl Phys Chem 440:191

    CAS  Article  Google Scholar 

  10. 10.

    Hulea V (2018) ACS Catal 8:3263

    CAS  Article  Google Scholar 

  11. 11.

    China Alpha-olefin and PAO Industry Annual Report, 2019, ASIACHEM

  12. 12.

    Friedrich MLS (2012) S Afr J Chem 65:214

    Google Scholar 

  13. 13.

    Takashi Monoi YS (2002) J Mol Catal A: Chem 187:135

    Article  Google Scholar 

  14. 14.

    Dixon JT, Green MJ, Hess FM, Morgan DH (2004) J Organomet Chem 689:3641

    CAS  Article  Google Scholar 

  15. 15.

    Heveling J, Nicolaides CP, Scurrell MS (2004) Catal Lett 95:87

    CAS  Article  Google Scholar 

  16. 16.

    Pellecchia C, Pappalardo D, Grute GJ (1999) Macromolecules 32:4491

    CAS  Article  Google Scholar 

  17. 17.

    Pellecchia C, Pappalardo D, Oliva L, Mazzeo M, Gruter GJ (2000) Macromolecules 33:2807

    CAS  Article  Google Scholar 

  18. 18.

    Wang M, Qian M, Rui L, Ren H (1999) J Organomet Chem 599:143

    Article  Google Scholar 

  19. 19.

    Etienne Derata JB, Philippe B, Jan S, Stephane H (2002) J Organomet Chem 664:268

    Article  Google Scholar 

  20. 20.

    Schmidta R, BruceWelch M, Knudsen R D, Gottfried S, G Alt H (2004) J Mol Catal A 222(1): 17-25

  21. 21.

    Cecily Andes SBH, Shahid M, Karl O, Ayusman S (2001) J Am Chem Soc 2001:7423

    Article  CAS  Google Scholar 

  22. 22.

    Shahid Murtuza SBH, Gregory SL, Ayusman S (1999) J Am Chem Soc 2000:1867

    Google Scholar 

  23. 23.

    Thiele D, de Souza RF (2015) Catal Lett 138:50

    Article  CAS  Google Scholar 

  24. 24.

    Qian M, Wang M, Zhou B, He R (2001) Appl Catal A: Gen 209:11

    CAS  Article  Google Scholar 

  25. 25.

    Small BL (2015) Acc Chem Res 48:2599

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Breuil PAR, Magna L, Olivier-Bourbigou H (2015) Catal Lett 145:173

    CAS  Article  Google Scholar 

  27. 27.

    Wang M, Wu W, Wang X, Huang X, Nai Y, Wei X, Mao G (2020) RSC Adv 10:43640

    CAS  Article  Google Scholar 

  28. 28.

    Kinoshita S, Kawamura K, Fujita T (2011) Chem an Asian J 6:284

    CAS  Article  Google Scholar 

  29. 29.

    McGuinness DS (2011) Chem Rev 111:2321

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Zhu F, Wang L, Yu H (2011) Des Monomers Polym 14:1

    Article  CAS  Google Scholar 

  31. 31.

    Huang Y, Zhang R, Liang T, Hu X, Solan GA, Sun W (2019) Organometallics 38:1143

    CAS  Article  Google Scholar 

  32. 32.

    Kiani D, Baltrusaitis J (2020). Catal Today.

    Article  Google Scholar 

  33. 33.

    Chakrabarti A, Wachs IE (2019) J Phys Chem C 123:12367

    CAS  Article  Google Scholar 

  34. 34.

    Monoi T, Sasaki Y (2002) J Mole Catal a-Chem 187:135

    CAS  Article  Google Scholar 

  35. 35.

    Carter A, Cohen S A, Cooley N A, Murphy A, Scutt J, Wass D F (2002) Chem Commun: 858.

  36. 36.

    Zhang J, Yan Y, Chu Q, Feng J (2015) Fuel Process Technol 135:2

    CAS  Article  Google Scholar 

  37. 37.

    Liu P, Redekop E, Gao X, Liu W, Olsbye U, Somorjai GA (2019) J Am Chem Soc 141:11557

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Moussa S, Patricia C, María A (2018) ACS Catal 8:3903

    CAS  Article  Google Scholar 

  39. 39.

    Schultz RG, Schuck JM, Wildi BS (1966) J Catal 6:385

    CAS  Article  Google Scholar 

  40. 40.

    Schultz RG (1967) J Catal 7:286

    CAS  Article  Google Scholar 

  41. 41.

    Schultz RG, Engelbrecht RM, Moore RN, Wolford LT (1966) J Catal 6:419

    CAS  Article  Google Scholar 

  42. 42.

    Zhao D, Xu Z, Chada JP, Carrero CA, Rosenfeld DC, Rogers JL, Hermans I, Huber GW (2017) ACS Catal 7:7479

    CAS  Article  Google Scholar 

  43. 43.

    Xu Z, Chada JP, Xu L, Zhao D, Rosenfeld DC, Rogers JL, Hermans I, Mavrikakis M, Huber GW (2018) ACS Catal 8:2488

    CAS  Article  Google Scholar 

  44. 44.

    Ard C. J. Koeken HMTG, Thomas D, Matthijs R, de Jong KP (2012) Angew Chem Int Ed 51: 7190

  45. 45.

    Kong F, Tan J, Chang J, Borgna A, Saeys M (2010) J Catal 274:121

    Article  CAS  Google Scholar 

  46. 46.

    Ahn C, KOO H M, Jin M, Kim J M, Kim T, Suh Y, Yoon KJ, Bae JW (2013) Microporous Mesoporous Mater 188: 196-202

  47. 47.

    Osswald S, Flahaut E, Ye H, Gogotsi Y (2005) Chem Phys Lett 402:422

    CAS  Article  Google Scholar 

  48. 48.

    Ferrari AC (2000) Phys Rev B 61:14095

    CAS  Article  Google Scholar 

  49. 49.

    Tembre A, Hénocque J, Clin M (2011) Int J Spectrosc 2011:1

    Article  CAS  Google Scholar 

  50. 50.

    Tuinstra F (1970) J Chem Phy 53:1126

    CAS  Article  Google Scholar 

  51. 51.

    Xu Z, Chada JP, Zhao D, Carrero CA, Kim YT, Rosenfeld DC, Rogers JL, Rozeveld SJ, Hermans I, Huber GW (2016) ACS Catal 6:3815

    CAS  Article  Google Scholar 

  52. 52.

    Sengar A, van Santen RA, Steur E, Kuipers JAM, Padding J (2018) ACS Catal 8:9016

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Blue RW, Engle CJ (1951) Ind Eng Chem Res 43:494

    CAS  Article  Google Scholar 

  54. 54.

    Zhao D, Wang X, Miller JB, Huber GW (2020) Chemsuschem 13:1764

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Jonathan A, Eagan NM, Bruns DL, Stahl SS, Lanci MP, Dumesic JA, Huber GW (2021) Catal Sci Technol 11:3599

    CAS  Article  Google Scholar 

Download references


This work was financially supported by Natural Science Foundation of China (91945301), the National Key R&D Program of China (2017YFB0602202), Program of Shanghai Academic/Technology Research Leader (20XD1404000), Key Research Program of Frontier Sciences, CAS (Grant No. QYZDB-SSW-SLH035), the “Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA21020600), Natural Science Foundation of Shanghai (18ZR1444100), Youth Innovation Promotion Association of CAS.

Author information



Corresponding author

Correspondence to Liangshu Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 281 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., An, Y., Yu, F. et al. Structure-Performance Evolution of Cobalt-Ammonia Activated Carbon Catalyst for Ethylene Oligomerization. Catal Lett (2021).

Download citation


  • Ethylene oligomerization
  • Co/N-AC
  • Deactivation
  • Catalysts regeneration