Skip to main content

Catalytic Dehydrogenation of Cyclohexanone to Phenol Over the Ru, Rh, Pd and Pt Surfaces in Sub-critical Water

Abstract

With the overview of different kinds of phenol synthesis routes, dehydrogenation of cyclohexanone to phenol under sub-critical water condition using Pt, Pd, Rh, Ru and Re immobilized heterogeneous catalysts have been reported. Surface properties and characterizations of the catalysts were done. Binding of metal on a support and their relationship with zeta potential (ζ) and their effect on catalytic activity are discussed. Importance of sub-critical water reaction conditions in terms of thermodynamic favourability and phase equilibrium are evaluated through ASPEN simulator. Based on the results obtained, possible reaction pathways for the formation of product and the by-products are illustrated. The feasibility of a metal acting as a dehydrogenation catalyst according to M0/MII (E0) couple is also explained.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Straathof AJJ, Bampouli A (2017) Biofuels Bioprod Biorefin 11:798–810

    CAS  Article  Google Scholar 

  2. 2.

    Zhao Y, Mao X, Li W, Gu X, Wang G (2017) Int J Coal Sci Technol 4:333–341

    CAS  Article  Google Scholar 

  3. 3.

    Granda M, Blanco C, Alvarez P, Patrick JW, Menéndez R (2014) Chem Rev 114:1608–1636

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Kenyon RL, Boehmer N (1950) Ind Eng Chem 42:1446–1455

    CAS  Article  Google Scholar 

  5. 5.

    Hale WJ, Britton EC (1933) US Patent 1907246, 2 May 1933

  6. 6.

    Weber M, Weber M, Kleine-Boymann M (2012) Ullmann’s encyclopedia of industrial chemistry, vol 26. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 503–519

    Google Scholar 

  7. 7.

    Hale WJ, Britton EC (1928) Ind Eng Chem 20:114–124

    CAS  Article  Google Scholar 

  8. 8.

    William KW (1962) US Patent 3061651A, 30 Oct 1962

  9. 9.

    Carey FA, Sundberg RJ (2007) Advanced organic chemistry, Part A: structure and mechanisms, 5th edn. Springer, New York

    Google Scholar 

  10. 10.

    Buijs W (1999) J Mol Catal A 146:237–246

    CAS  Article  Google Scholar 

  11. 11.

    Lyons JE, Suld G, Shinn RW (1980) US Patent 4225728, 30 Sep 1980

  12. 12.

    Niwa SI, Eswaramoorthy M, Nair J, Raj A, Itoh N, Shoji H, Namba T, Mizukami FA (2002) Science 295:105–107

    CAS  Article  Google Scholar 

  13. 13.

    Pirutko LV, Chernyavsky VS, Uriarte AK, Panov GI (2002) Appl Catal A 227:143–157

    CAS  Article  Google Scholar 

  14. 14.

    Bal R, Tada M, Sasaki T, Iwasawa Y (2006) Angew Chem Int Ed 118:462–466

    Article  Google Scholar 

  15. 15.

    Matsunaga F, Fukuhara H, Yasuhara M (1993) US Patent 5180871, 19 Jan 1993

  16. 16.

    Tomita O, Abe R, Ohtani B (2011) Chem Lett 40:1405–1407

    CAS  Article  Google Scholar 

  17. 17.

    Wang L, Yamamoto S, Malwadkar S, Nagamatsu S, Sasaki T, Hayashizaki K, Tada M, Iwasawa Y (2013) ChemCatChem 5:2203–2206

    CAS  Article  Google Scholar 

  18. 18.

    Tišler Z, Vondrová P, Hrachovcová K, Štěpánek K, Velvarská R, Kocík Jv, Svobodová E (2019) Catalysts 9:1068–1083

    Article  CAS  Google Scholar 

  19. 19.

    Masai M, Mori K, Muramoto H, Fujiwara T, Ohnaka S (1975) J Catal 38:128–134

    CAS  Article  Google Scholar 

  20. 20.

    Pun D, Diao T, Stahl SS (2013) J Am Chem Soc 135:8213–8221

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Liang YF, Li X, Wang X, Zou M, Tang C, Liang Y, Song S, Jiao N (2016) J Am Chem Soc 138:12271–12277

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Romero A, Santos A, Ruiz G, Simón E (2011) Ind Eng Chem Res 50:8498–8504

    CAS  Article  Google Scholar 

  23. 23.

    Song Z, Ren D, Fu J, Liu Y, Wang T, Jin F, Huo Z (2016) ChemistrySelect 1:2778–2782

    CAS  Article  Google Scholar 

  24. 24.

    Akiya N, Savage PE (2002) Chem Rev 102:2725–2750

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Munshi P, Bhaduri S (2009) Curr Sci 97:63–72

    CAS  Google Scholar 

  26. 26.

    Carr AG, Mammucari R, Foster NR (2011) Chem Eng J 172:1–17

    CAS  Article  Google Scholar 

  27. 27.

    Woodcock LV (2013) Fluid Phase Equilib 351:25–33

    CAS  Article  Google Scholar 

  28. 28.

    Vora BV (2012) Top Catal 55:1297–1308

    CAS  Article  Google Scholar 

  29. 29.

    Koichumanova K, Gupta KBSS, Lefferts L, Mojeta BL, Seshan K (2015) Phys Chem Chem Phys 17:23795–23804

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Liu C, Shih K, Gao Y, Li F, Wei L (2012) J Soils Sediments 12:724–733

    CAS  Article  Google Scholar 

  31. 31.

    Chen T, Qiu J, Zhu K, Ji H, Fan C, Chen Q (2013) J Mater Sci Mater Electron 24:2013–2018

    CAS  Article  Google Scholar 

  32. 32.

    Rahman MM, Hasnida N, Nik WBW (2009) J Sci Res 1:285–291

    CAS  Article  Google Scholar 

  33. 33.

    Jiang B, Li C, Dag Ö, Abe H, Takei T, Imai T, Hossain Md SA, Islam MdT, Wood K, Henzie J, Yamauchi Y (2017) Nat Commun 8:15581–15588

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Veerakumar P, Dhenadhayalan N, Lin KC, Liu SB (2015) J Mater Chem A 3:23448–23457

    CAS  Article  Google Scholar 

  35. 35.

    Kowalczyk Z, Jodzis S, Raróg W, Zieliński J, Pielaszek J, Presz A (1999) Appl Catal A 184:95–102

    CAS  Article  Google Scholar 

  36. 36.

    Yu J, Qi C, Zhang J, Bao C, Xu H (2015) J Mater Chem A 3:5000–5006

    CAS  Article  Google Scholar 

  37. 37.

    Reddy GK, Ling C, Pecka TC, Jiaa H (2017) RSC Adv 7:19645–19655

    CAS  Article  Google Scholar 

  38. 38.

    Ivanova AS, Slavinskaya EM, Gulyaev RV, Zaikovskii VI, Stonkus OA, Danilova IG, Plyasova LM, Polukhina IA, Boronin AI (2010) Appl Catal B 97:57–71

    CAS  Article  Google Scholar 

  39. 39.

    Cheng Y, Jiang SP (2015) Prog Nat Sci Mater Int 25:545–553

    CAS  Article  Google Scholar 

  40. 40.

    Luo Z, Wang Y, He M, Zhao C (2016) Green Chem 18:433–441

    CAS  Article  Google Scholar 

  41. 41.

    Kong X, Gong Y, Mao S, Wang Y (2018) ChemNanoMat 4:432–450

    CAS  Article  Google Scholar 

  42. 42.

    Ghanadzadeh H, Sangashekan M, Asan S (2013) Int J Chemoinform Chem Eng 3:75–84

    CAS  Google Scholar 

  43. 43.

    Meyer EF, Hotz RD (1973) J Chem Eng Data 18:359–362

    CAS  Article  Google Scholar 

  44. 44.

    Frolkova AV, Mayevskiy MA, Frolkova AK (2018) J Chem Eng Data 63:679–683

    CAS  Article  Google Scholar 

  45. 45.

    Reamer HH, Fiskin JM, Sage BH (1949) Ind Eng Chem 41:2871–2875

    CAS  Article  Google Scholar 

  46. 46.

    Guo XF, Jang DY, Jang HG, Kim GJ (2012) Catal Today 186:109–114

    CAS  Article  Google Scholar 

  47. 47.

    Amrute AP, Jeske K, Łodziana Z, Prieto G, Schüth F (2020) Chem Mater 32:4369–4374

    CAS  Article  Google Scholar 

  48. 48.

    Ongari D, Boyd PG, Barthel S, Witman M, Haranczyk M, Smit B (2017) Langmuir 33:14529–14538

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Zhang J, Jiang Q, Yang D, Zhao X, Dong Y, Liu R (2015) Chem Sci 6:4674–4680

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Liu C, Lu L, Rong Z, Liang C, Wang Y, Qu Q (2012) Catal Lett 142:1321–1329

    CAS  Article  Google Scholar 

  51. 51.

    Song Y, Wang H, Gao X, Feng Y, Liang S, Bi J (2017) Lin SFu, Wu-Ling XA. ACS Catal 7:8664–8674

    CAS  Article  Google Scholar 

  52. 52.

    Aboul-Gheit AK, Awadallah AE, Abdel-Hamid SM, El-Desouki DS (2011) Pet Sci Technol 29:1984–1994

    CAS  Article  Google Scholar 

  53. 53.

    Julkapli NM, Bagheri S (2015) Rev Inorg Chem 36:1–41

    Article  CAS  Google Scholar 

  54. 54.

    Triki M, Minh DP, Ksibi Z, Ghorbel A, Gallezot P, Besson M (2006) Stud Surf Sci Catal 162:609–616

    CAS  Article  Google Scholar 

  55. 55.

    Deelen TWV, Mejía CH, de-Jong KP (2019) Nat Catal 2:955–970

    Article  CAS  Google Scholar 

  56. 56.

    Liu L, Deng QF, Agula B, Zhao X, Renb TZ, Yuan ZY (2011) Chem Commun 47:8334–8336

    CAS  Article  Google Scholar 

  57. 57.

    Parapat RY, Saputra OHI, Ang AP, Schwarzea M, Schomäckera R (2014) RSC Adv 4:50955–50963

    CAS  Article  Google Scholar 

  58. 58.

    Liu X, Mäki-Arvela P, Aho A, Vajglova Z, Gunko VM, Heinmaa I, Kumar N, Eränen K, Salmi T, Murzin DYu (2018) Molecules 23:946–959

    PubMed Central  Article  CAS  Google Scholar 

  59. 59.

    Koh T, Koo HM, Yu T, Lim B, Bae JW (2014) ACS Catal 4:1054–1060

    CAS  Article  Google Scholar 

  60. 60.

    Drzymała E, Gruzeł G, Pajor-Świerzy A, Depciuch J, Socha R, Kowal A, Warszyński P, Parlinska-Wojtan M (2018) J Nanopart Res 20:144–156

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. 61.

    Rostek A, Breisch M, Pappert K, Loza K, Heggen M, Köller M, Sengstock C, Epple M (2018) Beilstein J Nanotechnol 9:2763–2774

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Baca M, Aleksandrzak M, Mijowska E, Kaleńczuk RJ, Zielińska B (2019) Catalysts 9:1007

    CAS  Article  Google Scholar 

  63. 63.

    Lahnafi A, Elgamouz A, Tijani N, Shehadi I (2020) Desalin Water Treat 182:175–186

    CAS  Article  Google Scholar 

  64. 64.

    Keramati H, Saidi MH, Zabetian M (2016) J Dispers Sci Technol 37:6–13

    CAS  Article  Google Scholar 

  65. 65.

    Dai M (1994) J Colloid Interface Sci 164:223–228

    CAS  Article  Google Scholar 

  66. 66.

    Schaefer DW, Kohls D, Feinblum E (2012) J Inorg Organomet Polym 22:617–623

    CAS  Article  Google Scholar 

  67. 67.

    Zhao M, Xia Y (2020) Nat Rev Mater 5:440–459

    CAS  Article  Google Scholar 

  68. 68.

    Roy P, Biswas S, Pramanik A, Sarkar P (2017) Int J Res Soc Nat Sci 2:2455–5916

    Google Scholar 

  69. 69.

    Wang F, Xia C, de-Visser SP, Wang Y (2019) J Am Chem Soc 141:901–910

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Bermejo MD, Cocero MJ (2006) AIChE 52:3933–3951

    CAS  Article  Google Scholar 

  71. 71.

    Kim J, Welch LA, Olivas A, Podkolzin SG, Koel BE (2010) Langmuir 26:16401–16411

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Jongerius AL, Bruijnincx PCA, Weckhuysen BM (2013) Green Chem 15:3049–3056

    CAS  Article  Google Scholar 

  73. 73.

    Haro J, Gómez R, Ferreira JM (1976) J Catal 45:326–333

    CAS  Article  Google Scholar 

  74. 74.

    Zhuang S, Wang X, Wei X, Wang Y, Ren S, Zhai R (1997) Surf Sci 376:L429–L433

    CAS  Article  Google Scholar 

  75. 75.

    Postnova MV, Koshel SG, Lebedeva NV, Kuznetsova EA, Koshel GN (2003) Russ J Org Chem 39:1415–1417

    CAS  Article  Google Scholar 

  76. 76.

    Moulijn JA, van Leeuwen PWNM, van Santen RA (eds) (1993) Chapter 4. In: Binding and elementary steps in catalysis, p 89. Stud Surf Sci Catal 79:89–158

  77. 77.

    Weinberg NL, Weinberg HR (1968) Chem Rev 68:449–523

    CAS  Article  Google Scholar 

  78. 78.

    Moya SA, Pastene R, Bozec HL, Fernandez M, Pardey AJ, Baricelli P, Lopez YR (1999) Bol Soc Chil Quím 44:423–426

    CAS  Article  Google Scholar 

  79. 79.

    Minachev KhM, Shuikin NI, Rozhdestvenskaya ID (1954) Bull Acad Sci USSR Div Chem Sci 3:277–281

    Article  Google Scholar 

  80. 80.

    Ma H, Jiao Y, Guo W, Liu X, Li Y, Wen XD (2020) J Phys Chem C 124:15920–15927

    CAS  Article  Google Scholar 

  81. 81.

    Sato S, Takahashi R, Sodesawa T, Kobayashi C, Miura A, Ogura K (2001) Phys Chem Chem Phys 3:885–890

    CAS  Article  Google Scholar 

  82. 82.

    Malpani V, Ganeshpure PA, Munshi P (2011) Ind Eng Chem Res 50:2467–2472

    CAS  Article  Google Scholar 

  83. 83.

    Ranganathan P, Savithri S (2019) Bioresour Technol 284:256–265

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors highly acknowledge Reliance Industries Limited to support the work. Authors also acknowledge J. Patel and V. Solanki for their support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pradip Munshi.

Ethics declarations

Conflict of interest

Authors declare they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2235 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agrawal, S., Mantri, K., Sharma, V. et al. Catalytic Dehydrogenation of Cyclohexanone to Phenol Over the Ru, Rh, Pd and Pt Surfaces in Sub-critical Water. Catal Lett (2021). https://doi.org/10.1007/s10562-021-03789-0

Download citation

Keywords

  • Cyclohexanone dehydrogenation
  • Phenol
  • Heterogeneous catalysts
  • Sub-critical water
  • Reaction mechanism