Skip to main content
Log in

Synthesis and Characterization of Co/Al-PILCs for the Oxidation of an Azo Dye Using the Bicarbonate-Activated Hydrogen Peroxide System

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Aluminum pillared clay (Al-PILC) was synthesized and impregnated with Co(II) nitrate (1.0, 3.0 and 6.0 wt.% cobalt), using an incipient wetness impregnation method. The obtained solids were characterized by XRF, XRD, N2 adsorption–desorption at 77 K and point of zero charge. This is the first study using cobalt impregnated in a pillared clay (Co/Al-PILC) as a catalyst for sunset yellow (SY) degradation, with bicarbonate-activated hydrogen peroxide (BAP) as the oxidizing agent. The influence of the amount of H2O2, the H2O2/NaHCO3 molar ratio, and the amount of Co impregnated in Al-PILC on azo dye oxidation in an aqueous solution was studied. The toxicity of by-products formed after dye oxidation with the BAP system was explored in an anaerobic digestion test. Total decolorizations were obtained for the reactions carried out with three cobalt impregnated catalysts, with 8 times the stoichiometric dose of H2O2 and H2O2/NaHCO3 molar ratios of 0.25 and 4.0. Textural properties of Co (1.0 wt.%)/Al-PILC can be related to its good catalytic performance in the oxidation of SY, using the BAP system, as it preserved 68.8% of the SBET and 66.0% of the microporous area of support. The concentration of leached cobalt in the tests, with the catalysts impregnated with 1.0 and 3.0 wt.% cobalt, was lower than the detection limit (< 0.01 mg/L), which indicated that the active phase was very stable at a basic pH. By-products generated during the oxidation of SY in the BAP system did not inhibit the specific methanogenic activity in anaerobic digestion.

Graphic Abstract

This is the first study using cobalt impregnated in a pillared clay (Co/Al-PILC) as a catalyst for an azo-dye degradation, with bicarbonate-activated hydrogen peroxide (BAP) as the oxidizing agent. Total decolorizations were obtained for the reactions carried out under the conditions studied. However, total carbon and nitrogen removals were low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Muhd Julkapli N, Bagheri S, Bee Abd Hamid S (2014) Sci World J 2014:692307

    Article  CAS  Google Scholar 

  2. Wojnárovits L, Takács E (2008) Radiat Phys Chem 77:225–244

    Article  CAS  Google Scholar 

  3. Bafana A, Sivanesan SD, Chakrabarti T (2011) Environ Rev 19:350–371

    Article  CAS  Google Scholar 

  4. Wakelyn PJ (2007) Health and safety issues in cotton production and processing. In: Gordon S, Hsieh Y-L (eds) Cotton: science and technology. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  5. Forgacs E, Cserháti T, Oros G (2004) Environ Int 30:953–971

    Article  CAS  PubMed  Google Scholar 

  6. Fernández C, Larrechi MS, Callao MP (2010) Trends Analyt Chem 29:1202–1211

    Article  CAS  Google Scholar 

  7. Deng Y, Zhao R (2015) Curr Pollut Rep 1:167–176

    Article  CAS  Google Scholar 

  8. Herney-Ramirez J, Silva AMT, Vicente MA, Costa CA, Madeira LM (2011) Appl Catal B Environ 101:197–205

    Article  CAS  Google Scholar 

  9. Oller I, Malato S, Sánchez-Pérez JA (2011) Sci Total Environ 409:4141–4166

    Article  CAS  PubMed  Google Scholar 

  10. Pan H, Gao Y, Li N, Zhou Y, Lin Q, Jiang J (2021) Chem Eng J 408:127332

    Article  CAS  Google Scholar 

  11. Richardson DE, Yao H, Frank KM, Bennett DA (2000) J Am Chem Soc 122:1729–1739

    Article  CAS  Google Scholar 

  12. Jawad A, Chen Z, Yin G (2016) Chin J Catal 37:810–825

    Article  CAS  Google Scholar 

  13. Xu A, Li X, Ye S, Yin G, Zeng Q (2011) Appl Catal B Environ 102:37–43

    Article  CAS  Google Scholar 

  14. Long X, Yang Z, Wang H, Chen M, Peng K, Zeng Q, Xu A (2012) Ind Eng Chem Res 51:11998–12003

    Article  CAS  Google Scholar 

  15. Xu A, Li X, Xiong H, Yin G (2011) Chemosphere 82:1190–1195

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Li L, Chen Z-X, Zhang J, Gong L, Wang Y-X, Zhao H-Q, Mu Y (2018) Chemosphere 192:372–378

    Article  CAS  PubMed  Google Scholar 

  17. Jawad A, Li Y, Lu X, Chen Z, Liu W, Yin G (2015) J Hazard Mater 289:165–173

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Xiong Z, Ruan X, Xia D, Zeng Q, Xu A (2012) Appl Catal A Gen 411–412:24–30

    Article  CAS  Google Scholar 

  19. Yang Z, Wang H, Chen M, Luo M, Xia D, Xu A, Zeng Q (2012) Ind Eng Chem Res 51:11104–11111

    Article  CAS  Google Scholar 

  20. Luo M, Lv L, Deng G, Yao W, Ruan Y, Li X, Xu A (2014) Appl Catal A Gen 469:198–205

    Article  CAS  Google Scholar 

  21. Macías-Quiroga IF, Rojas-Méndez EF, Giraldo-Gómez GI, Sanabria-González NR (2020) Data Brief 30:105463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bruland KW, Donat JR, Hutchins DA (1991) Limnol Ocenaogr 36:1555–1577

    Article  CAS  Google Scholar 

  23. Barceloux DG, Barceloux D (1999) J Toxicol Clin Toxicol 37:201–216

    Article  CAS  PubMed  Google Scholar 

  24. Zhou L, Song W, Chen Z, Yin G (2013) Environ Sci Technol 47:3833–3839

    Article  CAS  PubMed  Google Scholar 

  25. Duan L, Chen Y, Zhang K, Luo H, Huang J, Xu A (2015) RSC Adv 5:84303–84310

    Article  CAS  Google Scholar 

  26. Baloyi J, Ntho T, Moma J (2018) RSC Adv 8:5197–5211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pires J, Pinto M (2010) Pillared interlayered clays as adsorbents of gases and vapors. In: Gil A, Korili S, Trujillano R, Vicente MA (eds) Pillared clays and related catalysts. Springer, New York

    Google Scholar 

  28. Mnasri-Ghnimi S, Frini-Srasra N (2019) Appl Clay Sci 179:105151

    Article  CAS  Google Scholar 

  29. Torres M, de los Santos C, Portugau P, Yeste MDP, Castiglioni J (2021) Appl Clay Sci 201:105935

    Article  CAS  Google Scholar 

  30. Marković M, Marinović S, Mudrinić T, Ajduković M, Jović-Jovičić N, Mojović Z, Orlić J, Milutinović-Nikolić A, Banković P (2019) Appl Clay Sci 182:105276

    Article  CAS  Google Scholar 

  31. Kevan L (2003) Microporous materials: zeolites, clays, and aluminophosphates. In: Meyers RA (ed) Encyclopedia of physical science and technology (Third Edition). Academic Press, New York

    Google Scholar 

  32. Schoonheydt RA, Pinnavaia T, Lagaly G, Gangas N (1999) Pure Appl Chem 71:2367–2371

    Article  CAS  Google Scholar 

  33. Gil A, Massinon A, Grange P (1995) Microporous Mater 4:369–378

    Article  Google Scholar 

  34. Rinaldi N (2011) Widyariset 14:657–664

    Google Scholar 

  35. Zuo S, Yang P, Wang X (2017) ACS Omega 2:5179–5186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Macías-Quiroga IF, Giraldo-Gómez GI, Sanabria-González NR (2018) Sci World J 2018:5969178

    Article  CAS  Google Scholar 

  37. Day PR (1965) Particle fractionation and particle-size analysis. In: Black CA, Evans DD, Ensminger LE, White JL, Clarck FE (eds) Methods of soil analysis, part physical and mineralogical. American Society of Agronomy Inc., Madison

    Google Scholar 

  38. Carrado KA, Decarreau A, Petit S, Bergaya F, Lagaly G (2006) Synthetic clay minerals and purification of natural clays. In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science, vol 1. Place Elsevier Science, Amsterdam

    Google Scholar 

  39. Cañizares P, Valverde JL, Sun Kou MR, Molina CB (1999) Micropor Mesopor Mater 29:267–281

    Article  Google Scholar 

  40. Carriazo JG, Guelou E, Barrault J, Tatibouët JM, Moreno S (2003) Appl Clay Sci 22:303–308

    Article  CAS  Google Scholar 

  41. Ge Z, Li D, Pinnavaia TJ (1994) Microporous Mater 3:165–175

    Article  CAS  Google Scholar 

  42. Cardona Y, Korili SA, Gil A (2021) Appl Clay Sci 203:105996

  43. Fu G, Nazar LF, Bain AD (1991) Chem Mater 3:602–610

    Article  CAS  Google Scholar 

  44. Cheng LS, Yang RT (1997) Microporous Mater 8:177–186

    Article  CAS  Google Scholar 

  45. Sietsma JRA, Jos van Dillen A, de Jongh PE, de Jong KP (2006) Application of ordered mesoporous materials as model supports to study catalyst preparation by impregnation and drying. In: Gaigneaux EM, Devillers M, De Vos DE, Hermans S, Jacobs PA, Martens JA, Ruiz P (eds) Studies in surface science and catalysis, vol 162. Place Elsevier, Amsterdam

    Google Scholar 

  46. Herney-Ramirez J, Lampinen M, Vicente MA, Costa CA, Madeira LM (2008) Ind Eng Chem Res 47:284–294

    Article  CAS  Google Scholar 

  47. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. Academic Press, London

    Google Scholar 

  48. Gregg SJ, Sing KSW (1982) Adsorption, surface area and prorsity. Academic Press, London

    Google Scholar 

  49. Buttersack C, Möllmer J, Hofmann J, Gläser R (2016) Micropor Mesopor Mater 236:63–70

    Article  CAS  Google Scholar 

  50. Harkins WD, Jura G (1944) J Am Chem Soc 66:1366–1373

    Article  CAS  Google Scholar 

  51. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Catal Today 41:207–219

    Article  CAS  Google Scholar 

  52. Guechi E-K, Hamdaoui O (2016) Desalin Water Treat 57:10270–10285

    Article  CAS  Google Scholar 

  53. Balistrieri LS, Murray JW (1981) Am J Sci 281:788–806

    Article  CAS  Google Scholar 

  54. Deng H, Yang L, Tao G, Dai J (2009) J Hazard Mater 166:1514–1521

    Article  CAS  PubMed  Google Scholar 

  55. Saeed K, Ishaq M, Sultan S, Ahmad I (2016) Desalin Water Treat 57:13484–13493

    Article  CAS  Google Scholar 

  56. Guo X, Li H, Zhao S (2015) J Taiwan Inst Chem Eng 55:90–100

    Article  CAS  Google Scholar 

  57. Astals S, Batstone DJ, Tait S, Jensen PD (2015) Water Res 81:208–215

    Article  CAS  PubMed  Google Scholar 

  58. Sivrikaya O, Uzal B, Ozturk YE (2017) Appl Clay Sci 135:532–537

    Article  CAS  Google Scholar 

  59. Ramsey MH, Potts PJ, Webb PC, Watkins P, Watson JS, Coles BJ (1995) Chem Geol 124:1–19

    Article  CAS  Google Scholar 

  60. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  61. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  62. Gil A, Gandía LM, Vicente MA (2000) Catal Rev 42:145–212

    Article  CAS  Google Scholar 

  63. Gil A, Montes M (1994) Langmuir 10:291–297

    Article  CAS  Google Scholar 

  64. Vicente MA, Belver C, Trujillano R, Rives V, Álvarez AC, Lambert JF, Korili SA, Gandía LM, Gil A (2004) Appl Catal A Gen 267:47–58

    Article  CAS  Google Scholar 

  65. Colín LJA, Reyes JA, Vázquez A, Montoya A (2005) Appl Surf Sci 240:48–62

    Article  CAS  Google Scholar 

  66. Vicente MA, Lambert J-F (2001) Phys Chem Chem Phys 3:4843–4852

    Article  CAS  Google Scholar 

  67. Aguiar JE, Bezerra BTC, Siqueira ACA, Barrera D, Sapag K, Azevedo DCS, Lucena SMP, Silva IJ (2014) Sep Sci Technol 49:741–751

    Article  CAS  Google Scholar 

  68. Kan H, Soklun H, Yang Z, Wu R, Shen J, Qu G, Wang T (2020) Sep Purif Technol 232:115974

    Article  CAS  Google Scholar 

  69. Tanaka K, Padermpole K, Hisanaga T (2000) Water Res 34:327–333

    Article  CAS  Google Scholar 

  70. Guivarch E, Trevin S, Lahitte C, Oturan MA (2003) Environ Chem Lett 1:38–44

    Article  CAS  Google Scholar 

  71. Baughman GL, Weber EJ (1994) Environ Sci Technol 28:267–276

    Article  CAS  PubMed  Google Scholar 

  72. Weber EJ, Adams RL (1995) Environ Sci Technol 29:1163–1170

    Article  CAS  PubMed  Google Scholar 

  73. Meriç S, Kaptan D, Ölmez T (2004) Chemosphere 54:435–441

    Article  PubMed  CAS  Google Scholar 

  74. Ganesh R, Boardman GD, Michelsen D (1994) Water Res 28:1367–1376

    Article  CAS  Google Scholar 

  75. Chung KT, Fulk GE, Egan M (1978) Appl Environ Microbiol 35:558–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chung KT (1983) Mutat Res 114:269–281

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding for this study by a Colciencias PhD grant (Convocation 757-2016) and the DIMA-UNAL Project (code 50867) of Universidad Nacional de Colombia Sede Manizales.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy R. Sanabria-Gonzalez.

Ethics declarations

Conflict to interest

The authors declare that they have no conflict to interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macías-Quiroga, I.F., Pérez-Flórez, A., Arcila, J.S. et al. Synthesis and Characterization of Co/Al-PILCs for the Oxidation of an Azo Dye Using the Bicarbonate-Activated Hydrogen Peroxide System. Catal Lett 152, 1905–1916 (2022). https://doi.org/10.1007/s10562-021-03788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03788-1

Keywords

Navigation