Skip to main content

Porphyrin Functionalized Laser-Induced Graphene and Porous WO3 Assembled Effective Z-Scheme Photocatalyst for Promoted Visible-Light-Driven Degradation of Ciprofloxacin

Abstract

In this work, we prepared a highly effective Z-scheme FLIG/WO3 photocatalyst (LIG = laser-induced graphene). Under visible light irradiation, the photocatalytic degradation experiment of ciprofloxacin (CIP) showed that the photocatalytic performance of 0.4FLIG/WO3 material was 2.8 times and 8.0 times higher than that of pure FLIG and porous WO3, respectively. Bonding porphyrin groups to FLIG and the construction of Z-scheme heterojunction resulted in a significant enhancement of the photocatalytic performance. The modified porphyrine group enhanced the ability to absorb visible light, while the Z-Scheme effectively improved the separation efficiency of photo-generated carriers. The intermediate products of the CIP degradation process were analyzed by mass spectrometry, and based on the results, reasonable degradation pathways were proposed. Radical trapping experiments, band energy structure analysis and ESR technology indicated that ·OH and ·O2 were active substances that play a major role in the photocatalytic process, thereby realizing the effective degradation of CIP. Visible-light-driven 0.4FLIG/WO3 is a green and efficient photocatalyst to degrade CIP.

Graphic Abstract

An effective direct Z-scheme 0.4FLIG/WO3 photocatalyst was developed for catalytic degradation of ciprofloxacin in wastewater under visible light irradiation. The significantly enhanced photoactivity is attributed to the bonding of porphyrin groups in FLIG and the construction of the Z-type heterojunction interface.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Jing L, Xu Y, Liu J, Zhou M, Xu H, Xie M, Li H, Xie J (2020) Appl Catal B: Environ 277:119245

    CAS  Article  Google Scholar 

  2. 2.

    Xu J, Li X, Niu J, Chen M, Yue J (2020) J Alloy Compd 834:155061

    CAS  Article  Google Scholar 

  3. 3.

    Zou C, Liang M, Yang Z, Zhou X, Yang Y, Yang S (2020) Nanotechnology 31:34345604

    Google Scholar 

  4. 4.

    Shi W, Li M, Huang X, Ren H, Guo F, Tang Y, Lu C (2020) Chem Eng J 394:125009

    CAS  Article  Google Scholar 

  5. 5.

    Yuan X, Jiang L, Chen X, Leng L, Wang H, Wu Z, Xiong T, Liang J, Zeng G (2017) Environ Sci-Nano 4:2175

    CAS  Article  Google Scholar 

  6. 6.

    Dang W, Wang W, Yang Y, Wang Y, Huang J, Fang X, Wu L, Rong Z, Chen X, Li X, Huang L, Tang X (2019) Electrochim Acta 313:99–108

    CAS  Article  Google Scholar 

  7. 7.

    Singh J, Arora A, Basu S (2019) J Alloy Compd 808:151734

    CAS  Article  Google Scholar 

  8. 8.

    Li H, Yu H, Quan X, Chen S, Zhang Y (2016) ACS Appl Mater Interfaces 8:2111–2119

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Sadeghzadeh SM, Zhiani R, Morad M (2018) Chemistry Select 3:3516–3522

    CAS  Google Scholar 

  10. 10.

    Sadeghzadeh SM, Daneshfar F, Malekzadeh M (2014) Chinese J Chem 32:349–355

    CAS  Article  Google Scholar 

  11. 11.

    Zheng F, Xi C, Xu J, Yu Y, Yang W, Hu P, Li Y, Zhen Q, Bashir S, Liu JL (2019) J Alloy Compd 772:933–942

    CAS  Article  Google Scholar 

  12. 12.

    Yang X, Salles V, Kaneti YV, Liu M, Maillard M, Journet C, Jiang X, Brioude A (2015) Sensor Actuat B-Chem 220:1112–1119

    CAS  Article  Google Scholar 

  13. 13.

    Li W, Da P, Zhang Y, Wang Y, Lin X, Gong X, Zheng G (2014) ACS Nano 8:11770–11777

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Li B, Sun L, Bian J, Sun N, Sun J, Chen L, Li Z, Jing L (2020) Appl Catal B: Environ 270:118849

    CAS  Article  Google Scholar 

  15. 15.

    Aly SM, Parida MR, Alarousu E, Mohammed OF (2014) Chem Commun 50:10452

    CAS  Article  Google Scholar 

  16. 16.

    Chen Y, Long J, Zhou S, Shi D, Huang Y, Chen X, Gao J, Zhao N, Wong C (2019) Small Methods 3:1900208

    CAS  Article  Google Scholar 

  17. 17.

    Zhu J, Cho M, Li Y, Cho I, Suh J, Orbe D, Jeong Y, Ren T, Park I (2019) ACS Appl Mater Interfaces 11:24386–24394

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Ren M, Zhang J, Tour J (2019) ACS Appl Energy Mater 2:1460–1468

    CAS  Article  Google Scholar 

  19. 19.

    Ye R, James D, Tour J (2019) Adv Mater 31:1803621

    Article  CAS  Google Scholar 

  20. 20.

    Li Q, Zeng Q, Gao L, Ullah Z, Li H, Guo Y, Li W, Shi Y, Tao G, Liu L (2017) J Mater Chem A 5:155

    CAS  Article  Google Scholar 

  21. 21.

    Alkhouzaam A, Qiblawey H, Khraisheh M, Atieh M, Al-Ghouti M (2020) Ceram Int 46:23997–24007

    CAS  Article  Google Scholar 

  22. 22.

    Haidry AA, Wang Z, Fatima Q, Zavabeti A, Xie L, Zhu H, Li Z (2020) Appl Surf Sci 531:147285

    CAS  Article  Google Scholar 

  23. 23.

    Zare-Dorabei R, Rahimi R, Koohi A, Zargari S (2015) RSC Adv 5:93310

    CAS  Article  Google Scholar 

  24. 24.

    Kadhim A, McKenzie LK, Bryant HE, Twyman LJ (2019) Mol Pharmaceutics 16:1132–1139

    CAS  Article  Google Scholar 

  25. 25.

    Liu Y, Gan D, Chen M, Ma L, Yang B, Li L, Zhu M, Tu W (2020) Sep Purif Technol 253:117552

    CAS  Article  Google Scholar 

  26. 26.

    Weng B, Yang M, Zhang N, Xu Y (2014) J Mater Chem A 2:9380

    CAS  Article  Google Scholar 

  27. 27.

    Chen L, Zhang C, Wu L, Lv K, Deng K, Wu T (2018) Nanoscale Res Lett 13:336

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Zhou Y, Shi Y, Wang F, Xia X (2019) Anal Chem 91:2759–2767

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Salama TM, Morsy M, Shahba RMA, Mohamed SH, Mohamed MM (2019) Front Chem 7:722

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Torrisi L, Silipigni L, Cutroneo M, Torrisi A (2020) Vacuum 173:109175

    CAS  Article  Google Scholar 

  31. 31.

    Xiao Y, He Z, Wang R, Tao X, Li B (2019) Colloids and Surfaces A 580:123752

    CAS  Article  Google Scholar 

  32. 32.

    Guo H, Jiang N, Wang H, Shang K, Lu N, Li J, Wu Y (2019) Chemosphere 230:190–200

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Yu C, Chen F, Liu Z, Yang K, Ji H, Li D, Xie W, Li S (2019) J Alloy Compd 809:151844

    CAS  Article  Google Scholar 

  34. 34.

    Zhong S, Wang X, Wang Y, Zhou F, Li J, Liang S, Li C (2020) J Alloy Compd 843:155598

    CAS  Article  Google Scholar 

  35. 35.

    Gao C, Meng Q, Zhao K, Yin H, Wang D, Guo J, Zhao S, Chang L, He M, Li Q, Zhao H, Huang X, Gao Y, Tang Z (2016) Adv Mater 28:6485–6490

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Fakhri H, Bagheri H (2020) Mat Sci Semicon Proc 107:104815

    CAS  Article  Google Scholar 

  37. 37.

    Chuaicham C, Pawar RR, Karthikeyan S, Ohtani B, Sasaki K (2020) J Colloid Interf Sci 577:397–405

    CAS  Article  Google Scholar 

  38. 38.

    Zhou M, Chen Z, Yang P, Wang S, Huang C, Wang X (2020) Appl Catal B-Environ 276:118916

    CAS  Article  Google Scholar 

  39. 39.

    Ismail M, Khan MI, Khan SB, Akhtar K, Khan MA, Asiri AM (2018) J Mol Liq 268:87–101

    CAS  Article  Google Scholar 

  40. 40.

    Das KC, Dhar SS (2020) J Mater Sci 55:4592–4606

    CAS  Article  Google Scholar 

  41. 41.

    Ipte PR, Satpati AK (2020) Biophys Chem 266:106456

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Duo F, Zhang M, Zhou J, Wang C, Chu L, Su X (2019) Mater Res Express 6:115553

    Article  Google Scholar 

  43. 43.

    Esfahanian M, Ghasemzadeh MA, Razavian SMH (2019) Artif Cell Nanomed B 47:2024–2030

    CAS  Article  Google Scholar 

  44. 44.

    Li L, Zheng X, Chi Y, Wang Y, Sun X, Yue Q, Gao B, Xu S (2020) J Hazard Mater 383:121211

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Wang F, Feng Y, Chen P, Wang Y, Su Y, Zhang Q, Zeng Y, Xie Z, Liu H, Liu Y, Lv W, Liu G (2018) Appl Catal B: Environ 227:114–122

    CAS  Article  Google Scholar 

  46. 46.

    Deng J, Ge Y, Tan C, Wang H, Li Q, Zhou S, Zhang K (2017) Chem Eng J 330:1390–1400

    CAS  Article  Google Scholar 

  47. 47.

    Chen M, Yao J, Huang Y, Gong H, Chu W (2018) Chem Eng J 334:453–461

    CAS  Article  Google Scholar 

  48. 48.

    Zou Y, Li W, Yang L, Xiao F, An G, Wang Y, Wang D (2019) Chem Eng J 370:1286–1297

    CAS  Article  Google Scholar 

  49. 49.

    Wang A, Zheng Z, Wang H, Chen Y, Luo C, Liang D, Hu B, Qiu R, Yan K (2020) Appl Catal B-Environ 277:119171

    CAS  Article  Google Scholar 

  50. 50.

    Zeng Q, Wang X, Xie X, Lu G, Wang Y, Lee S, Sun J (2020) Chem Eng J 379:122395

    CAS  Article  Google Scholar 

  51. 51.

    Zhang J, Xin J, Shao C, Li X, Li X, Liu S, Liu Y (2019) J Colloid Interf Sci 550:170–179

    CAS  Article  Google Scholar 

  52. 52.

    Shi L, He Z, Liu S (2018) Appl Surf Sci 457:30–40

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (Grant Nos. 21571030 and 51975127).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yun Chen or Fang Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (doc 7874 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Long, J., Zou, X. et al. Porphyrin Functionalized Laser-Induced Graphene and Porous WO3 Assembled Effective Z-Scheme Photocatalyst for Promoted Visible-Light-Driven Degradation of Ciprofloxacin. Catal Lett (2021). https://doi.org/10.1007/s10562-021-03786-3

Download citation

Keywords

  • Photocatalysis
  • Degradation
  • Nanostructure
  • Z-scheme
  • Porphyrins
  • Laser-induced graphene
  • Ciprofloxacin