Skip to main content
Log in

Simple Thermocatalytic Oxidation Degradation of VOCs

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) are a class of pollutants with many sources and harm humans and the environment. The application of noble metal catalysts and metal oxide catalysts in thermal catalytic oxidation degradation of VOCs was reviewed in this paper. Furthermore, the challenges of degradation of VOCs by thermal catalytic oxidation are listed and the prospects are put forward.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang Z, Jiang Z, Shangguan W (2016) Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catal Today 264:270–278

    Article  CAS  Google Scholar 

  2. Zou Z, He J, Yang X (2020) An experimental method for measuring VOC emissions from individual human whole-body skin under controlled conditions. Build Environ 181:107137

    Article  Google Scholar 

  3. Liu C, Xu Z, Du Y, Guo H (2000) Analyses of volatile organic compounds concentrations and variation trends in the air of Changchun, the northeast of China. Atmos Environ 34:4459–4466

    Article  CAS  Google Scholar 

  4. Liao Y, Zhang X, Peng R, Zhao M, Ye D (2017) Catalytic properties of manganese oxide polyhedra with hollow and solid morphologies in toluene removal. Appl Surf Sci 405:20–28

    Article  CAS  Google Scholar 

  5. Zheng C, Shen J, Zhang Y, Huang W, Zhu X, Wu X, Chen L, Gao X, Cen K (2017) Quantitative assessment of industrial VOC emissions in China: historical trend, spatial distribution, uncertainties, and projection. Atmos Environ 150:116–125

    Article  CAS  Google Scholar 

  6. Li X, Zhang L, Yang Z, Wang P, Yan Y, Ran J (2020) Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Sep Purif Technol 235:116213

    Article  CAS  Google Scholar 

  7. Khan FI, Ghoshal AK (2000) Removal of volatile organic compounds from polluted air. J Loss Prevent Proc 13:527–545

    Article  Google Scholar 

  8. Aguado S, Polo AC, Bernal MP, Coronas JN, Santamarı́ AJ (2004) Removal of pollutants from indoor air using zeolite membranes. J Membr Sci 240:159–166

    Article  CAS  Google Scholar 

  9. Zhang X, Gao B, Creamer AE, Cao C, Li Y (2017) Adsorption of VOCs onto engineered carbon materials: a review. J Hazard Mater 338:102–123

    Article  CAS  PubMed  Google Scholar 

  10. Kraus M, Trommler U, Holzer F, Kopinke FD, Roland U (2018) Competing adsorption of toluene and water on various zeolites. Chem Eng J 351:356–363

    Article  CAS  Google Scholar 

  11. Jiang Z, Chen M, Shi J, Yuan J, Shangguan W (2015) Catalysis removal of indoor volatile organic compounds in room temperature: from photocatalysis to active species assistance catalysis. Catal Surv Asia 19:1–16

    Article  CAS  Google Scholar 

  12. He C, Cheng J, Zhang X, Douthwaite M, Hao Z (2019) Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev 119:4471–4568

    Article  CAS  PubMed  Google Scholar 

  13. Lee JE, Ok YS, Tsang DCW, Song J, Jung S-C, Park Y-K (2020) Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: a critical review. Sci Total Environ 719:137405

    Article  CAS  PubMed  Google Scholar 

  14. Cheng Y, He H, Yang C, Zeng G, Li X, Chen H, Yu G (2016) Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnol Adv 34:1091–1102

    Article  CAS  PubMed  Google Scholar 

  15. Zhu X, Zhang S, Yang Y, Zheng C, Zhou J, Gao X, Tu X (2017) Enhanced performance for plasma-catalytic oxidation of ethyl acetate over La1-xCexCoO3+δ catalysts. Appl Catal B 213:97–105

    Article  CAS  Google Scholar 

  16. Wang W, Fan X, Zhu T, Wang H, Ye D, Hong X (2016) Removal of gas phase dimethylamine and N, N-dimethylformamide using non-thermal plasma. Chem Eng J 299:184–191

    Article  CAS  Google Scholar 

  17. Zhang J, Hu Y, Qin J, Yang Z, Fu M (2020) TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs. Chem Eng J 385:123814

    Article  CAS  Google Scholar 

  18. Li JJ, Weng B, Cai SC, Chen J, Xu YJ (2017) Efficient promotion of charge transfer and separation in hydrogenated TiO2/WO3 with rich surface-oxygen-vacancies for photodecomposition of gaseous toluene. J Hazard Mater 342:661

    Article  PubMed  CAS  Google Scholar 

  19. Shayegan Z, Lee C-S, Haghighat F (2018) TiO2 photocatalyst for removal of volatile organic compounds in gas phase—a review. Chem Eng J 334:2408–2439

    Article  CAS  Google Scholar 

  20. Modanlu S, Shafiekhani A (2019) Synthesis of pure and C/S/N co-doped Titania on Al mesh and their photocatalytic usage in Benzene degradation. Sci Rep 9:16648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li JJ, Yu EQ, Cai SC, Chen X, Chen J, Jia HP, Xu YJ (2019) Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light. Appl Catal B 240:141–152

    Article  CAS  Google Scholar 

  22. Jiang C, Wang H, Lin S, Ma F, Ji H (2019) Low-temperature photothermal catalytic oxidation of toluene on a core/shell SiO2@Pt@ZrO2 nanostructure. Ind Eng Chem Res 58:16450–16458

    Article  CAS  Google Scholar 

  23. Han B, Lang R, Qiao B, Wang A, Zhang T (2017) Highlights of the major progress in single-atom catalysis in 2015 and 2016. Chin J Catal 38:1498–1507

    Article  CAS  Google Scholar 

  24. Huang H, Xu Y, Feng Q, Leung DYC (2015) Low temperature catalytic oxidation of volatile organic compounds: a review. Catal Sci Technol 5:2649–2669

    Article  CAS  Google Scholar 

  25. Xu L, Chen D, Qu J, Wang L, Tang J, Liu H, Yang J (2018) Replacement reaction-based synthesis of supported palladium catalysts with atomic dispersion for catalytic removal of benzene. J Mater Chem A 6:17032–17039

    Article  CAS  Google Scholar 

  26. Vellingiri K, Vikrant K, Kumar V, Kim K-H (2020) Advances in thermocatalytic and photocatalytic techniques for the room/low temperature oxidative removal of formaldehyde in air. Chem Eng J 399:125759

    Article  CAS  Google Scholar 

  27. Kong J, Xiang Z, Li G, An T (2020) Introduce oxygen vacancies into CeO2 catalyst for enhanced coke resistance during photothermocatalytic oxidation of typical VOCs. Appl Catal B 269:118755

    Article  CAS  Google Scholar 

  28. Wang Q, Yeung KL, Bañares MA (2019) Ceria and its related materials for VOC catalytic combustion: a review. Catal Today 356:141–154

    Article  CAS  Google Scholar 

  29. Chen J, Chen X, Yan D, Jiang M, Xu W, Yu H, Jia H (2019) A facile strategy of enhancing interaction between cerium and manganese oxides for catalytic removal of gaseous organic contaminants. Appl Catal B 250:396–407

    Article  CAS  Google Scholar 

  30. Yang C, Miao G, Pi Y, Xia Q, Wu J, Li Z, Xiao J (2019) Abatement of various types of VOCs by adsorption/catalytic oxidation: a review. Chem Eng J 370:1128–1153

    Article  CAS  Google Scholar 

  31. Zhai X, Jing F, Li L, Jiang X, Zhang J, Ma J, Chu W (2021) Toluene catalytic oxidation over the layered MOx - deltα-MnO2 (M = Pt, Ir, Ag) composites originated from the facile self-driving combustion method. Fuel 283:118888

    Article  CAS  Google Scholar 

  32. Pei W, Liu Y, Deng J, Zhang K, Hou Z, Zhao X, Dai H (2019) Partially embedding Pt nanoparticles in the skeleton of 3DOM Mn2O3: an effective strategy for enhancing catalytic stability in toluene combustion. Appl Catal B 256:117814

    Article  CAS  Google Scholar 

  33. Liu G, Tian Y, Zhang B, Wang L, Zhang X (2019) Catalytic combustion of VOC on sandwich-structured Pt@ZSM-5 nanosheets prepared by controllable intercalation. J Hazard Mater 367:568–576

    Article  CAS  PubMed  Google Scholar 

  34. Peng R, Li S, Sun X, Ren Q, Chen L, Fu M, Wu J, Ye D (2018) Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Appl Catal B 220:462–470

    Article  CAS  Google Scholar 

  35. Huang S, Yang D, Tang Q, Deng W, Zhang L, Jia Z, Tian Z, Gao Q, Guo L (2020) Pt-loaded ellipsoidal nanozeolite as an active catalyst for toluene catalytic combustion. Microporous Mesoporous Mater 305:110292

    Article  CAS  Google Scholar 

  36. Weng X, Shi B, Liu A, Sun J, Xiong Y, Wan H, Zheng S, Dong L, Chen Y-W (2019) Highly dispersed Pd/modified-Al2O3 catalyst on complete oxidation of toluene: role of basic sites and mechanism insight. Appl Surf Sci 497:143747

    Article  CAS  Google Scholar 

  37. Hyok Ri S, Bi F, Guan A, Zhang X (2020) Manganese-cerium composite oxide pyrolyzed from metal organic framework supporting palladium nanoparticles for efficient toluene oxidation. J Colloid Interface Sci 586:836–846

    Article  PubMed  CAS  Google Scholar 

  38. Li X, Dai H, Deng J, Liu Y, Xie S, Zhao Z, Wang Y, Guo G, Arandiyan H (2013) Au/3DOM LaCoO3: High-performance catalysts for the oxidation of carbon monoxide and toluene. Chem Eng J 228:965–975

    Article  CAS  Google Scholar 

  39. Chen ZY, Mao JX, Zhou RX (2019) Preparation of size-controlled Pt supported on Al2O3 nanocatalysts for deep catalytic oxidation of benzene at lower temperature. Appl Surf Sci 465:15–22

    Article  CAS  Google Scholar 

  40. Cheng Z, Feng B, Chen Z, Zheng J, Li J, Zuo S (2020) La2O3 modified silica-pillared clays supported PtOx nanocrystalline catalysts for catalytic combustion of benzene. Chem Eng J 392:123747

    Article  CAS  Google Scholar 

  41. Chen Z, Li J, Cheng Z, Zuo S (2018) Well-defined and highly stable AlNi composite pillared clay supported PdOx nanocrystal catalysts for catalytic combustion of benzene. Appl Clay Sci 163:227–234

    Article  CAS  Google Scholar 

  42. Chen Z, Li J, Yang P, Cheng Z, Li J, Zuo S (2019) Ce-modified mesoporous Γ-Al2O3 supported Pd-Pt nanoparticle catalysts and their structure-function relationship in complete benzene oxidation. Chem Eng J 356:255–261

    Article  CAS  Google Scholar 

  43. Ma X, Yu X, Ge M (2020) Highly efficient catalytic oxidation of benzene over Ag assisted Co3O4 catalysts. Catal Today 376:262–268

    Article  CAS  Google Scholar 

  44. Wu Y, Shi S, Yuan S, Bai T, Xing S (2019) Insight into the enhanced activity of Ag/NiOx-MnO2 for catalytic oxidation of o-xylene at low temperatures. Appl Surf Sci 479:1262–1269

    Article  CAS  Google Scholar 

  45. Xia Y, Wang Z, Feng Y, Xie S, Liu Y, Dai H, Deng J (2020) In situ molten salt derived iron oxide supported platinum catalyst with high catalytic performance for o-xylene elimination. Catal Today 351:30–36

    Article  CAS  Google Scholar 

  46. Xie S, Liu Y, Deng J, Zhao X, Yang J, Zhang K, Han Z, Arandiyan H, Dai H (2017) Effect of transition metal doping on the catalytic performance of Au–Pd/3DOM Mn2O3 for the oxidation of methane and o-xylene. Appl Catal B 206:221–232

    Article  CAS  Google Scholar 

  47. Liu Y, Dai H, Deng J, Xie S, Yang H, Tan W, Han W, Jiang Y, Guo G (2014) Mesoporous Co3O4-supported gold nanocatalysts: highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene. J Catal 309:408–418

    Article  CAS  Google Scholar 

  48. Xu Z, Yu J, Jaroniec M (2015) Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt. Appl Catal B 163:306–312

    Article  CAS  Google Scholar 

  49. Sun D, Le Y, Jiang C, Cheng B (2018) Ultrathin Bi2WO6 nanosheet decorated with Pt nanoparticles for efficient formaldehyde removal at room temperature. Appl Surf Sci 441:429–437

    Article  CAS  Google Scholar 

  50. Zhu X, Yu J, Jiang C, Cheng B (2017) Enhanced room-temperature HCHO decomposition activity of highly-dispersed Pt/Al2O3 hierarchical microspheres with exposed 110 facets. J Ind Eng Chem 45:197–205

    Article  CAS  Google Scholar 

  51. Lu A, Sun H, Zhang N, Che L, Shan S, Luo J, Zheng J, Yang L, Peng D-L, Zhong C-J, Chen B (2019) Surface partial-charge-tuned enhancement of catalytic activity of platinum nanocatalysts for toluene oxidation. ACS Catal 9:7431–7442

    Article  CAS  Google Scholar 

  52. Morales-Torres S, Carrasco-Marín F, Pérez Cadenas AF, Maldonado-Hódar FJ (2015) Coupling noble metals and carbon supports in the development of combustion catalysts for the abatement of BTX compounds in air streams. Catalysts 5:774–799

    Article  CAS  Google Scholar 

  53. Zhu X, Cheng B, Yu J, Ho W (2016) Halogen poisoning effect of Pt-TiO2 for formaldehyde catalytic oxidation performance at room temperature. Appl Surf Sci 364:808–814

    Article  CAS  Google Scholar 

  54. Xie S, Dai H, Deng J, Liu Y, Yang H, Jiang Y, Tan W, Ao A, Guo G (2013) Au/3DOM Co3O4: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. Nanoscale 5:11207–11219

    Article  CAS  PubMed  Google Scholar 

  55. Song S, Wu X, Lu C, Wen M, Le Z, Jiang S (2018) Solid strong base K-Pt/NaY zeolite nano-catalytic system for completed elimination of formaldehyde at room temperature. Appl Surf Sci 442:195–203

    Article  CAS  Google Scholar 

  56. Wang Z, Ma P, Zheng K, Wang C, Liu Y, Dai H, Wang C, Hsi H-C, Deng J (2020) Size effect, mutual inhibition and oxidation mechanism of the catalytic removal of a toluene and acetone mixture over TiO2 nanosheet-supported Pt nanocatalysts. Appl Catal B 274:118963

    Article  CAS  Google Scholar 

  57. Liu YZ, Guo RT, Duan CP, Wu GL, Miao YF, Gu JW, Pan WG (2021) Removal of gaseous pollutants by using 3DOM-based catalysts: a review. Chemosphere 262:127886

    Article  CAS  PubMed  Google Scholar 

  58. Zhang J, Rao C, Peng H, Peng C, Zhang L, Xu X, Liu W, Wang Z, Zhang N, Wang X (2018) Enhanced toluene combustion performance over Pt loaded hierarchical porous MOR zeolite. Chem Eng J 334:10–18

    Article  CAS  Google Scholar 

  59. Ying F, Wang S, Au C-T, Lai S-Y (2011) Highly active and stable mesoporous Au/CeO2 catalysts prepared from MCM-48 hard-template. Microporous Mesoporous Mater 142:308–315

    Article  CAS  Google Scholar 

  60. Chen J, Yan D, Xu Z, Chen X, Chen X, Xu W, Jia H, Chen J (2018) A novel redox precipitation to synthesize Au-doped α-MnO2 with high dispersion toward low-temperature oxidation of formaldehyde. Environ Sci Technol 52:4728–4737

    Article  CAS  PubMed  Google Scholar 

  61. Chen J, Jiang M, Chen J, Xu W, Jia H (2020) Selective immobilization of single-atom Au on cerium dioxide for low-temperature removal of C1 gaseous contaminants. J Hazard Mater 392:122511

    Article  CAS  PubMed  Google Scholar 

  62. Chen X, Wang H, Chen M, Qin X, He H, Zhang C (2021) Co-function mechanism of multiple active sites over Ag/TiO2 for formaldehyde oxidation. Appl Catal B 282:119543

    Article  CAS  Google Scholar 

  63. Qin Y, Wang Y, Li J, Qu Z (2020) Effect of Ag on toluene oxidation over Ag supported wire-like MnO2 catalysts. Surf Interfaces 21:100657

    Article  CAS  Google Scholar 

  64. Liu M, Wu X, Liu S, Gao Y, Chen Z, Ma Y, Ran R, Weng D (2017) Study of Ag/CeO2 catalysts for naphthalene oxidation: balancing the oxygen availability and oxygen regeneration capacity. Appl Catal B 219:231–240

    Article  CAS  Google Scholar 

  65. Zhu J, Zhang W, Qi Q, Zhang H, Zhang Y, Sun D, Liang P (2019) Catalytic oxidation of toluene, ethyl acetate and chlorobenzene over Ag/MnO2-cordierite molded catalyst. Sci Rep 9:12162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lin T, Yu L, Sun M, Cheng G, Lan B, Fu Z (2016) Mesoporous α-MnO2 microspheres with high specific surface area: Controlled synthesis and catalytic activities. Chem Eng J 286:114–121

    Article  CAS  Google Scholar 

  67. Dai Q, Wu J, Deng W, Hu J, Wu Q, Guo L, Sun W, Zhan W, Wang X (2019) Comparative studies of P/CeO2 and Ru/CeO2 catalysts for catalytic combustion of dichloromethane: from effects of H2O to distribution of chlorinated by-products. Appl Catal B 249:9–18

    Article  CAS  Google Scholar 

  68. Lao Y, Zhu N, Jiang X, Zhao J, Dai Q, Wang X (2018) Effect of Ru on the activity of Co3O4 catalysts for chlorinated aromatics oxidation. Catal Sci Technol 8:4797–4811

    Article  CAS  Google Scholar 

  69. Okal J, Zawadzki M, Kraszkiewicz P, Adamska K (2018) Ru/CeO2 catalysts for combustion of mixture of light hydrocarbons: effect of preparation method and metal salt precursors. Appl Catal A 549:161–169

    Article  CAS  Google Scholar 

  70. Wang Y, Yang D, Li S, Chen M, Guo L, Zhou J (2018) Ru/hierarchical HZSM-5 zeolite as efficient bi-functional adsorbent/catalyst for bulky aromatic VOCs elimination. Microporous Mesoporous Mater 258:17–25

    Article  CAS  Google Scholar 

  71. Liu X, Chen L, Zhu T, Ning R (2019) Catalytic oxidation of chlorobenzene over noble metals (Pd, Pt, Ru, Rh) and the distributions of polychlorinated by-products. J Hazard Mater 363:90–98

    Article  CAS  PubMed  Google Scholar 

  72. Zhang X, Liu Y, Deng J, Yu X, Han Z, Zhang K, Dai H (2019) Alloying of gold with palladium: an effective strategy to improve catalytic stability and chlorine-tolerance of the 3DOM CeO2-supported catalysts in trichloroethylene combustion. Appl Catal B 257:117879

  73. Wang H, Yang W, Tian P, Zhou J, Tang R, Wu S (2017) A highly active and anti-coking Pd-Pt/SiO2 catalyst for catalytic combustion of toluene at low temperature. Appl Catal A 529:60–67

    Article  CAS  Google Scholar 

  74. Liu J, Bunes BR, Zang L, Wang C (2017) Supported single-atom catalysts: synthesis, characterization, properties, and applications. Environ Chem Lett 16:477–505

    Article  CAS  Google Scholar 

  75. Liu J (2017) Catalysis by supported single metal atoms. ACS Catal 7:34–59

    Article  CAS  Google Scholar 

  76. Hou Z, Dai L, Liu Y, Deng J, Jing L, Pei W, Gao R, Feng Y, Dai H (2021) Highly efficient and enhanced sulfur resistance supported bimetallic single-atom palladium–cobalt catalysts for benzene oxidation. Appl Catal B 285:119844

    Article  CAS  Google Scholar 

  77. Zheng T, Zili W, Anderson L, Yu E, Jeffrey W, Piernavieja-Hermida M (2016) Towards ALD thin film stabilized single-atom Pd-1 catalysts. Nanoscale 8:15348–15356

    Article  CAS  Google Scholar 

  78. Jones J, Xiong H, Delariva AT, Peterson EJ, Pham H, Challa SR, Qi G, Oh S, Wiebenga MH, Pereira Hernandez XI (2016) Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353:150–154

    Article  CAS  PubMed  Google Scholar 

  79. Zhang HY, Sui SH, Zheng XM, Cao RR, Zhang PY (2019) One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures. Appl Catal B 257:117878

    Article  CAS  Google Scholar 

  80. Yuan YF, Liu C, Byles BW, Yao WT, Song B, Cheng M, Huang ZN, Amine K, Pomerantseva E, Shahbazian-Yassar R, Lu J (2019) Ordering heterogeneity of MnO6 octahedra in tunnel-structured MnO2 and its influence on ion storage. Joule 3:471–484

    Article  CAS  Google Scholar 

  81. Wang D, Wang L, Liang G, Li H, Zhi C (2019) A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano 13:10643–10652

    Article  CAS  PubMed  Google Scholar 

  82. Sihaib Z, Puleo F, Garcia-Vargas JM, Retailleau L, Descorme C, Liotta LF, Valverde JL, Gil S, Giroir-Fendler A (2017) Manganese oxide-based catalysts for toluene oxidation. Appl Catal B 209:689–700

    Article  CAS  Google Scholar 

  83. Rong S, Zhang P, Liu F, Yang Y (2018) Engineering crystal facet of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde. ACS Catal 8:3435–3446

    Article  CAS  Google Scholar 

  84. Sun H, Liu Z, Chen S, Quan X (2015) The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene. Chem Eng J 270:58–65

    Article  CAS  Google Scholar 

  85. Zhu Q, Jiang Z, Ma M, He C, Yu Y, Liu X, Albilali R (2020) Revealing the unexpected promotion effect of diverse potassium precursors on α-MnO2 for the catalytic destruction of toluene. Catal Sci Technol 10:2100–2110

    Article  CAS  Google Scholar 

  86. Hou J, Liu L, Li Y, Mao M, Lv H, Zhao X (2013) Tuning the K+ concentration in the tunnel of OMS 2 nanorods leads to a significant enhancement of the catalytic activity for benzene oxidation. Environ Sci Technol 47:13730–13736

    Article  CAS  PubMed  Google Scholar 

  87. Li Y, Shen W (2014) Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem Soc Rev 43:1543–1574

    Article  PubMed  Google Scholar 

  88. Yan D, Mo S, Sun Y, Ren Q, Feng Z, Chen P, Wu J, Fu M, Ye D (2020) Morphology-activity correlation of electrospun CeO2 for toluene catalytic combustion. Chemosphere 247:125860

    Article  CAS  PubMed  Google Scholar 

  89. Wang F, Dai H, Deng J, Bai G, Ji K, Liu Y (2012) Manganese Oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ Sci Technol 46:4034–4041

    Article  CAS  PubMed  Google Scholar 

  90. Yang W, Su ZA, Xu Z, Yang W, Peng Y, Li J (2020) Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates. Appl Catal B 260:118150

    Article  CAS  Google Scholar 

  91. Li R, Zhang L, Zhu S, Fu S, Dong X, Ida S, Zhang L, Guo L (2020) Layered δ-MnO2 as an active catalyst for toluene catalytic combustion. Appl Catal A 602:117715

    Article  CAS  Google Scholar 

  92. Huang N, Qu Z, Dong C, Qin Y, Duan X (2018) Superior performance of α@β-MnO2 for the toluene oxidation: active interface and oxygen vacancy. Appl Catal A 560:195–205

    Article  CAS  Google Scholar 

  93. Liu Y, Zhou H, Cao R, Liu X, Zhang P, Zhan J, Liu L (2019) Facile and green synthetic strategy of birnessite-type MnO2 with high efficiency for airborne benzene removal at low temperatures. Appl Catal B 245:569–582

    Article  CAS  Google Scholar 

  94. Wang Z, Jia H, Zheng T, Dai Y, Zhang C, Guo X, Wang T, Zhu L (2020) Promoted catalytic transformation of polycyclic aromatic hydrocarbons by MnO2 polymorphs: synergistic effects of Mn3+ and oxygen vacancies. Appl Catal B 272:119030

    Article  CAS  Google Scholar 

  95. Yang W, Peng Y, Wang Y, Wang Y, Liu H, Su ZA, Yang W, Chen J, Si W, Li J (2020) Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: active heterostructure interfaces. Appl Catal B 278:119279

    Article  CAS  Google Scholar 

  96. Piumetti M, Fino D, Russo N (2015) Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs. Appl Catal B 163:277–287

    Article  CAS  Google Scholar 

  97. Luo D, Liu S, Liu J, Zhao J, Miao C, Ren J (2018) Catalytic combustion of toluene over cobalt oxides supported on graphitic carbon nitride (CoOx/g-C3N4) catalyst. Ind Eng Chem Res 57:11920–11928

    Article  CAS  Google Scholar 

  98. Chen J, Xu W, Jiang M, Chen J, Jia H (2020) Polyoxometallate functionalizing CeO2 via redox-etching precipitation to synergistically catalyze oxidation of gaseous chlorinated pollutants: from lab to practice. Appl Catal B 278:119263

  99. Zhang X, Zhao J, Song Z, Zhao H, Liu W, Ma Z, Zhao M, Zhao B (2019) Enhancement of catalytic performance over different transition metals modified CeO2 for toluene abatement. React Kinet Mech Cat 128:271–287

    Article  CAS  Google Scholar 

  100. Yu C, Yang W, Xia L, Wu J, Mao S, Hu L, Fu C, Lu M (2020) Preparation of Mn-Ce composite oxide microspheres and their performance on toluene catalytic oxidation. Chin J Environ Eng 14:1554–1562

    Google Scholar 

  101. Yang J, Li L, Yang X, Song S, Li J, Jing F, Chu W (2019) Enhanced catalytic performances of in situ-assembled LaMnO3/δ-MnO2 hetero-structures for toluene combustion. Catal Today 327:19–27

    Article  CAS  Google Scholar 

  102. Hu J, Li WB, Liu RF (2018) Highly efficient copper-doped manganese oxide nanorod catalysts derived from CuMnO hierarchical nanowire for catalytic combustion of VOCs. Catal Today 314:147–153

    Article  CAS  Google Scholar 

  103. Wang J, Yoshida A, Wang P, Yu T, Wang Z, Hao X, Abudula A, Guan G (2020) Catalytic oxidation of volatile organic compound over cerium modified cobalt-based mixed oxide catalysts synthesized by electrodeposition method. Appl Catal B 271:118941

  104. Dong C, Qu Z, Qin Y, Fu Q, Sun H, Duan X (2019) Revealing the highly catalytic performance of spinel CoMn2O4 for toluene oxidation: involvement and replenishment of oxygen species using in situ designed-TP techniques. ACS Catal 9:6698–6710

    Article  CAS  Google Scholar 

  105. Hu F, Chen J, Zhao S, Li K, Si W, Song H, Li J (2017) Toluene catalytic combustion over copper modified Mn0.5Ce0.5 Ox solid solution sponge-like structures. Appl Catal A 540:57–67

    Article  CAS  Google Scholar 

  106. Chen J, Chen X, Xu W, Xu Z, Chen J, Jia H, Chen J (2017) Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene. Chem Eng J 330:281–293

    Article  CAS  Google Scholar 

  107. Ren Q, Mo S, Fan J, Feng Z, Zhang M, Chen P, Gao J, Fu M, Chen L, Wu J, Ye D (2020) Enhancing catalytic toluene oxidation over MnO2@Co3O4 by constructing a coupled interface. Chin J Catal 41:1873–1883

    Article  CAS  Google Scholar 

  108. Deng W, Tang Q, Huang S, Zhang L, Jia Z, Guo L (2020) Low temperature catalytic combustion of chlorobenzene over cobalt based mixed oxides derived from layered double hydroxides. Appl Catal B 278:119336

  109. Djinović P, Ristić A, Žumbar T, Dasireddy VDBC, Rangus M, Dražić G, Popova M, Likozar B, Zabukovec Logar N, Novak Tušar N (2020) Synergistic effect of CuO nanocrystals and Cu-oxo-Fe clusters on silica support in promotion of total catalytic oxidation of toluene as a model volatile organic air pollutant. Appl Catal B 268:118749

    Article  CAS  Google Scholar 

  110. Wang Y, Wang G, Deng W, Han J, Qin L, Zhao B, Guo L, Xing F (2020) Study on the structure-activity relationship of Fe-Mn oxide catalysts for chlorobenzene catalytic combustion. Chem Eng J 395:125172

  111. Sun P, Zhai S, Chen J, Yuan J, Wu Z, Weng X (2020) Development of a multi-active center catalyst in mediating the catalytic destruction of chloroaromatic pollutants: a combined experimental and theoretical study. Appl Catal B 272:119015

    Article  CAS  Google Scholar 

  112. Sun P, Wang W, Weng X, Dai X, Wu Z (2018) Alkali potassium induced HCl/CO2 selectivity enhancement and chlorination reaction inhibition for catalytic oxidation of chloroaromatics. Environ Sci Technol 52:6438–6447

    Article  CAS  PubMed  Google Scholar 

  113. Picasso G, Cruz R, Sun Kou MDR (2015) Preparation by co-precipitation of Ce–Mn based catalysts for combustion of n-hexane. Mater Res Bull 70:621–632

    Article  CAS  Google Scholar 

  114. Tang W, Wu X, Li S, Li W, Chen Y (2014) Porous Mn-Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs. Catal Commun 56:134–138

    Article  CAS  Google Scholar 

  115. Wang P, Wang J, An X, Shi J, Shangguan W, Hao X, Xu G, Tang B, Abudula A, Guan G (2021) Generation of abundant defects in Mn-Co mixed oxides by a facile agar-gel method for highly efficient catalysis of total toluene oxidation. Appl Catal B 282:119560

    Article  CAS  Google Scholar 

  116. Dong Y, Zhao J, Zhang J-Y, Chen Y, Yang X, Song W, Wei L, Li W (2020) Synergy of Mn and Ni enhanced catalytic performance for toluene combustion over Ni-doped α-MnO2 catalysts. Chem Eng J 388:124244

    Article  CAS  Google Scholar 

  117. Dong C, Qu Z, Jiang X, Ren Y (2020) Tuning oxygen vacancy concentration of MnO2 through metal doping for improved toluene oxidation. J Hazard Mater 391:122181

    Article  CAS  PubMed  Google Scholar 

  118. Wei G, Zhang Q, Zhang D, Wang J, Tang T, Wang H, Liu X, Song Z, Ning P (2019) The influence of annealing temperature on copper-manganese catalyst towards the catalytic combustion of toluene: the mechanism study. Appl Surf Sci 497:143777

    Article  CAS  Google Scholar 

  119. Ma WJ, Huang Q, Xu Y, Chen YW, Zhu SM, Shen SB (2013) Catalytic combustion of toluene over Fe–Mn mixed oxides supported on cordierite. Ceram Int 39:277–281

    Article  CAS  Google Scholar 

  120. Luo M, Cheng Y, Peng X, Pan W (2019) Copper modified manganese oxide with tunnel structure as efficient catalyst for low-temperature catalytic combustion of toluene. Chem Eng J 369:758–765

    Article  CAS  Google Scholar 

  121. Wang Y, Zhang L, Guo L (2018) Enhanced toluene combustion over highly homogeneous iron manganese oxide nanocatalysts. ACS Appl Nano Mater 1:1066–1075

    Article  CAS  Google Scholar 

  122. Hu F, Chen J, Peng Y, Song H, Li K, Li J (2018) Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion. Chem Eng J 331:425–434

    Article  CAS  Google Scholar 

  123. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041

    Article  CAS  PubMed  Google Scholar 

  124. Trovarelli A, Llorca J (2017) Ceria catalysts at nanoscale: how do crystal shapes shape catalysis? ACS Catal 7:4716–4735

    Article  CAS  Google Scholar 

  125. Li P, Chen X, Ma L, Bhat A, Li Y, Schwank JW (2019) Effect of Ce and la dopants in Co3O4 nanorods on the catalytic activity of CO and C3H6 oxidation. Catal Sci Technol 9:1165–1177

    Article  CAS  Google Scholar 

  126. Li L, Zhang C, Chen F, Xiang Y, Yan J, Chu W (2020) Facile fabrication of hollow structured Cu-Ce binary oxides and their catalytic properties for toluene combustion. Catal Today 376:239–246

    Article  CAS  Google Scholar 

  127. Zhao L, Zhang Z, Li Y, Leng X, Zhang T, Yuan F, Niu X, Zhu Y (2019) Synthesis of CeaMnOx hollow microsphere with hierarchical structure and its excellent catalytic performance for toluene combustion. Appl Catal B 245:502–512

    Article  CAS  Google Scholar 

  128. Yang Q, Wang D, Wang C, Li X, Li K, Peng Y, Li J (2018) Facile surface improvement method for LaCoO3 for toluene oxidation. Catal Sci Technol 8:3166–3173

    Article  CAS  Google Scholar 

  129. Feng Z, Ren Q, Peng R, Mo S, Zhang M, Fu M, Chen L, Ye D (2019) Effect of CeO2 morphologies on toluene catalytic combustion. Catal Today 332:177–182

    Article  CAS  Google Scholar 

  130. Yang P, Shi Z, Yang S, Zhou R (2015) High catalytic performances of CeO2-CrOx catalysts for chlorinated VOCs elimination. Chem Eng Sci 126:361–369

    Article  CAS  Google Scholar 

  131. Yang P, Shi Z, Tao F, Yang S, Zhou R (2015) Synergistic performance between oxidizability and acidity/texture properties for 1,2-dichloroethane oxidation over (Ce, Cr)xO2/zeolite catalysts. Chem Eng Sci 134:340–347

    Article  CAS  Google Scholar 

  132. Dai Q, Yin LL, Bai S, Wang W, Wang X, Gong XQ, Lu G (2016) Catalytic total oxidation of 1,2-dichloroethane over VOx/CeO2 catalysts: further insights via isotopic tracer techniques. Appl Catal B 182:598–610

    Article  CAS  Google Scholar 

  133. Wang S, Liu Q, Zhao Z, Fan C, Chen X, Xu G, Wu M, Chen J, Li J (2020) Enhanced low-temperature activity of toluene oxidation over the rod-like MnO2/LaMnO3 perovskites with alkaline hydrothermal and acid-etching treatment. Ind Eng Chem Res 59:6556–6564

    Article  CAS  Google Scholar 

  134. Parvizi N, Rahemi N, Allahyari S, Tasbihi M (2020) Plasma-catalytic degradation of BTX over ternary perovskite-type La1-x (Co, Zn, Mg, Ba-x MnO3 nanocatalysts. J Ind Eng Chem 84:167–178

    Article  CAS  Google Scholar 

  135. Huang Z, Zhao M, Luo J, Zhang X, Liu W, Wei Y, Zhao J, Song Z (2020) Interaction in LaOx-Co3O4 for highly efficient purification of toluene: insight into LaOx content and synergistic effect contribution. Sep Purif Technol 251:117369

    Article  CAS  Google Scholar 

  136. Liu L, Liu R, Xu T, Zhang Q, Tan Y, Zhang Q, Ding J, Tang Y (2020) Enhanced catalytic oxidation of chlorobenzene over MnO2 grafted in situ by rare earth oxide: surface doping induces lattice oxygen activation. Inorg Chem 59:14407–14414

    Article  CAS  PubMed  Google Scholar 

  137. Tian M, Guo X, Dong R, Guo Z, Shi J, Yu Y, Cheng M, Albilali R, He C (2019) Insight into the boosted catalytic performance and chlorine resistance of nanosphere-like meso-macroporous CrOx/MnCo3Ox for 1,2-dichloroethane destruction. Appl Catal B 259:118018

    Article  CAS  Google Scholar 

  138. Li X, Li X, Zeng X, Zhu T (2019) Correlation between the physicochemical properties and catalytic performances of micro/mesoporous CoCeOx mixed oxides for propane combustion. Appl Catal A 572:61–70

    Article  CAS  Google Scholar 

  139. Han W, Zhao H, Dong F, Tang Z (2018) Morphology-controlled synthesis of 3D, mesoporous, rosette-like CeCoOx catalysts by pyrolysis of Ce[Co(CN)6] and application for the catalytic combustion of toluene. Nanoscale 10:21307–21319

    Article  CAS  PubMed  Google Scholar 

  140. Han Z, Liu Y, Deng J, Xie S, Zhao X, Yang J, Zhang K, Dai H (2019) Preparation and high catalytic performance of Co3O4–MnO2 for the combustion of o-xylene. Catal Today 327:246–253

    Article  CAS  Google Scholar 

  141. Luo Y, Zheng Y, Zuo J, Feng X, Wang X, Zhang T, Zhang K, Jiang L (2018) Insights into the high performance of Mn-Co oxides derived from metal-organic frameworks for total toluene oxidation. J Hazard Mater 349:119–127

    Article  CAS  PubMed  Google Scholar 

  142. Yang WT, Lin CJ, Montini T, Fornasiero P, Ya S, Liou SYH (2021) High-performance and long-term stability of mesoporous Cu-doped TiO2 microsphere for catalytic CO oxidation. J Hazard Mater 403:123630

    Article  CAS  PubMed  Google Scholar 

  143. Li Z, Yan Q, Jiang Q, Gao Y, Xue T, Li R, Liu Y, Wang Q (2020) Oxygen vacancy mediated CuyCo3-yFe1Ox mixed oxide as highly active and stable toluene oxidation catalyst by multiple phase interfaces formation and metal doping effect. Appl Catal B 269:118827

    Article  CAS  Google Scholar 

  144. Deng L, Ding Y, Duan B, Chen Y, Li P, Zhu S, Shen S (2018) Catalytic deep combustion characteristics of benzene over cobalt doped Mn-Ce solid solution catalysts at lower temperatures. Mol Catal 446:72–80

    Article  CAS  Google Scholar 

  145. He C, Yu Y, Yue L, Qiao N, Li J, Shen Q, Yu W, Chen J, Hao Z (2014) Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol. Appl Catal B 147:156–166

    Article  CAS  Google Scholar 

  146. Zeng Y, Wang Y, Song F, Zhang S, Zhong Q (2020) The effect of CuO loading on different method prepared CeO2 catalyst for toluene oxidation. Sci Total Environ 712:135635

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the support of the National Engineering Research Center for Fine Petrochemical Intermediates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxing Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Niu, Y., Su, H. et al. Simple Thermocatalytic Oxidation Degradation of VOCs. Catal Lett 152, 1801–1818 (2022). https://doi.org/10.1007/s10562-021-03770-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03770-x

Keywords

Navigation