Skip to main content
Log in

Titanium-doped Boron Nitride Fullerenes as Novel Single-atom Catalysts for CO Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Inspired by the discovery of the special structures of Ti-doped boron nitride fullerenes [(2019) Nat Commun 10: 4908], we herein present a computational investigation of Ti(BN)14 as a single-atom catalyst for CO oxidation. Density functional theory calculations suggested that the reaction may be effectively catalyzed at the Ti site following the Eley–Rideal mechanism, with the rate-determining barrier of 23.0 kcal/mol. The satisfactory catalytic activity along with the advantage of avoiding aggregation of the single atoms makes these novel nanocages promising cluster-based catalysts.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lin J, Wang XD, Zhang T (2016) Chin J Catal 37:1805–1813

    Article  CAS  Google Scholar 

  2. Zhang NQ, Ye CL, Yan H, Li LC, He H, Wang DS, Li YD (2020) Nano Res 13:3165–3182

    Article  CAS  Google Scholar 

  3. Kua J, Goddard WA (1999) J Am Chem Soc 121:10928–10941

    Article  CAS  Google Scholar 

  4. Saavedra J, Whittaker T, Chen ZF, Pursell CJ, Rioux RM, Chandler BD (2016) Nat Chem 8:584–589

    Article  CAS  PubMed  Google Scholar 

  5. Beniya A, Higashi S (2019) Nat Catal 2:590–602

    Article  CAS  Google Scholar 

  6. Ciapina EG, Santos SF, Gonzalez ER (2018) J Electroanal Chem 815:47–60

    Article  CAS  Google Scholar 

  7. Sankar M, He Q, Engel RV, Sainna MA, Logsdail AJ, Roldan A, Willock DJ, Agarwal N, Kiely CJ, Hutchings GJ (2020) Chem Rev 120:3890–3938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Freund HJ, Meijer G, Scheffler M, Schlogl R, Wolf M (2011) Angew Chem Int Ed 50:10064–10094

    Article  CAS  Google Scholar 

  9. Laidler KJ (1996) Pure Appl Chem 68:149–192

    Article  CAS  Google Scholar 

  10. Langmuir I (1922) Trans Faraday Soc 17:607–620

    Article  Google Scholar 

  11. Prins R (2018) Top Catal 61:714–721

    Article  CAS  Google Scholar 

  12. Sun KJ (2016) Chin J Catal 37:1608–1618

    Article  CAS  Google Scholar 

  13. Jiang QG, Zhang JF, Ao ZM, Huang HJ, He HY, Wu YP (2018) Front Chem 6:187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Xu GL, Wang R, Yang F, Ma DW, Yang ZX, Lu ZS (2017) Carbon 118:35–42

    Article  CAS  Google Scholar 

  15. Wang SY, Li JQ, Li Q, Bai XW, Wang JL (2020) Nanoscale 12:364–371

    Article  PubMed  Google Scholar 

  16. Widmann D, Behm RJ (2018) J Catal 357:263–273

    Article  CAS  Google Scholar 

  17. Mars P, van Krevelen DW (1954) Chem Eng Sci 3:41–59

    Article  CAS  Google Scholar 

  18. Krishnan R, Wu SY, Chen HT (2018) Phys Chem Chem Phys 20:26414–26421

    Article  CAS  PubMed  Google Scholar 

  19. Li YZ, Yu Y, Wang J-G, Song J, Li Q, Dong MD, Liu C-J (2012) Appl Catal B 125:189–196

    Article  CAS  Google Scholar 

  20. Moses-DeBusk M, Yoon M, Allard LF, Mullins DR, Wu Z, Yang X, Veith G, Stocks GM, Narula CK (2013) J Am Chem Soc 135:12634–12645

    Article  CAS  PubMed  Google Scholar 

  21. Qiao BT, Wang AQ, Yang XF, Allard LF, Jiang Z, Cui YT, Liu JY, Li J, Zhang T (2011) Nat Chem 3:634–641

    Article  CAS  PubMed  Google Scholar 

  22. Wang AQ, Li J, Zhang T (2018) Nat Rev Chem 2:65–81

    Article  CAS  Google Scholar 

  23. Qiao BT, Liang J-X, Wang AQ, Xu C-Q, Li J, Zhang T, Liu JY (2015) Nano Res 8:2913–2924

    Article  CAS  Google Scholar 

  24. Li L, Wang AQ, Qiao BT, Lin J, Huang YQ, Wang XD, Zhang T (2013) J Catal 299:90–100

    Article  CAS  Google Scholar 

  25. Cao LN, Liu W, Luo QQ, Yin RT, Wang B, Weissenrieder J, Soldemo M, Yan H, Lin Y, Sun ZH, Ma C, Zhang WH, Chen S, Wang HW, Guan QQ, Yao T, Wei SQ, Yang JL, Lu JL (2019) Nature 565:631–635

    Article  CAS  PubMed  Google Scholar 

  26. Zou XP, Wang LN, Li XN, Liu QY, Zhao YX, Ma TM, He SG (2018) Angew Chem Int Ed Engl 57:10989–10993

    Article  CAS  PubMed  Google Scholar 

  27. Hulsey MJ, Zhang B, Ma Z, Asakura H, Do DA, Chen W, Tanaka T, Zhang P, Wu Z, Yan N (2019) Nat Commun 10:1330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Peterson EJ, DeLaRiva AT, Lin S, Johnson RS, Guo H, Miller JT, Hun Kwak J, Peden CH, Kiefer B, Allard LF, Ribeiro FH, Datye AK (2014) Nat Commun 5:4885

    Article  CAS  PubMed  Google Scholar 

  29. Liang J-X, Lin J, Yang X-F, Wang A-Q, Qiao B-T, Liu JY, Zhang T, Li J (2014) J Phys Chem C 118:21945–21951

    Article  CAS  Google Scholar 

  30. Huang HC, Wang J, Li J, Zhao Y, Dong XX, Chen J, Lu G, Bu YX, Cheng SB (2020) ACS Appl Mater Interfaces 12:19457–19466

    Article  CAS  PubMed  Google Scholar 

  31. Gao Y, Cai ZW, Wu XC, Lv ZL, Wu P, Cai CX (2018) ACS Catal 8:10364–10374

    Article  CAS  Google Scholar 

  32. Wu P, Du P, Zhang H, Cai CX (2015) Phys Chem Chem Phys 17:1441–1449

    Article  CAS  PubMed  Google Scholar 

  33. Qin RX, Liu PX, Fu G, Zheng NF (2018) Small Methods 2:1700286

    Article  CAS  Google Scholar 

  34. Li RY, Wang Y (2019) Nat Commun 10:4908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhao Y, Truhlar DG (2007) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  36. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  37. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  PubMed  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, et al. Gaussian 16 Rev. B.01, Wallingford, CT, 2016.

  39. Grimme S (2006) J Chem Phys 124:034108

    Article  PubMed  CAS  Google Scholar 

  40. Neese F (2011) WIREs Comput Mol Sci 2:73–78

    Article  CAS  Google Scholar 

  41. Neese F (2018) WIREs Comput Mol Sci 8: e1327.

  42. Fukui K (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  43. Liu B, McLean AD (1973) J Chem Phys 59:4557–4558

    Article  CAS  Google Scholar 

  44. Jansen HB, Ros P (1969) Chem Phys Lett 3:140–143

    Article  CAS  Google Scholar 

  45. Esrafili MD, Heydari S (2018) ChemistrySelect 3:4471–4479

    Article  CAS  Google Scholar 

  46. Parey V, Jyothirmai MV, Kumar EM, Saha B, Gaur NK, Thapa R (2019) Carbon 143:38–50

    Article  CAS  Google Scholar 

  47. Sinthika S, Kumar EM, Surya VJ, Kawazoe Y, Park N, Iyakutti K, Thapa R (2015) Sci Rep 5:17460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Grant LN, Ahn S, Manor BC, Baik MH, Mindiola DJ (2017) Chem Commun 53:3415–3417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Thousand Talents Plan for Young Professionals of China and the National Natural Science Foundation of China (22073080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Wang, Y. Titanium-doped Boron Nitride Fullerenes as Novel Single-atom Catalysts for CO Oxidation. Catal Lett 152, 1742–1751 (2022). https://doi.org/10.1007/s10562-021-03762-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03762-x

Keywords

Navigation