Skip to main content
Log in

Liquid Phase Oxidation of Benzyl Alcohol over Pt and Pt–Ni Alloy Supported on TiO2: Using O2 or H2O2 as Oxidant?

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Benzyl alcohol can be oxidized selectively to benzaldehyde over platinum-based catalysts using either oxygen (O2, supplied in the form of synthetic air) or the more powerful hydrogen peroxide (H2O2) as the oxidant. Here we compare these oxidants in the aqueous phase oxidation of benzyl alcohol in a batch reactor at 363.15 K or 393.15 K over monodisperse Pt and Pt–Ni nanostructures synthesized with molybdenum hexacarbonyl (Mo(CO)6) as a reductant. The initial catalytic activity of either Pt or a Pt–Ni alloy anchored on titania support (TiO2) is much higher when using H2O2 than when using O2 (supplied in the form of synthetic air). However, the high initial activity using H2O2 is accompanied by a strong decrease in the activity over Pt. Alloying Pt with Ni results in a reduction in the activity in the benzyl alcohol oxidation when using O2 but enhances the initial activity when using H2O2. The results are rationalized based on a change in the relative surface concentration of oxygen-containing species upon changing the oxidant or alloying Pt with Ni.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The relative oxidation power of H2O vs O2 can be easily assessed by defining a common virtual oxygen species, ‘O’, which may be generated from either gaseous oxygen or hydrogen peroxide:\(1/2\;\text{O}_{2}(\text{g}) \rightarrow \text{`O'}\;\text{and\; at\; equilibrium}\;\mu_{{_{{{}^\backprime O^{\prime}}} }}^{{ex\;O_{2} (g)}} = \frac{1}{2}\mu_{{O_{2} (g)}}\)\(\text{H}_{2}\text{O}_{2}(\text{l}) \rightarrow \text{`O'}+\text{H}_{2}\text{O(l)}\;\text{and\; at\; equilibrium}\;\mu_{{{}^\backprime O^{\prime}}}^{{ex\;H_{2} O_{2} (l)}} = \mu_{{H_{2} O_{2} (l)}} - \mu_{{H_{2} O(l)}}\)

    Thus, the chemical potential of the oxygen species generated from hydrogen peroxide can be much higher than the chemical potential of the oxygen species generated from gaseous oxygen with: \(\mu_{{_{{{}^\backprime O^{\prime}}} }}^{{ex\;H_{2} O_{2} (l)}} - \mu_{{{}^\backprime O^{\prime}}}^{{ex\;O_{2} (g)}} = \mu_{{H_{2} O_{2} (l)}} - \mu_{{H_{2} O_{2} (l)}} - \frac{1}{2}\mu_{{O_{2} (g)}} = \Delta_{rxn}^{{}} \underline {G}^{0} + RT \cdot \ln \frac{{\gamma_{{H_{2} O_{2} }} \cdot x_{{H_{2} O_{2} }} }}{{\gamma_{{H_{2} O}} \cdot x_{{H_{2} O}} \cdot \left( {\frac{{p_{{O_{2} }} }}{1bar}} \right)^{0.5} }}\)

    with \(\Delta_{rxn} \underline {G}^{0} (298.15K) = 108.1 \cdot \frac{kJ}{{mol}}.\) An increase in the chemical potential may thus increase the equilibrium concentration of the active oxygen species. In heterogeneous catalysis, the surface coverage of the active oxygen is limited by saturation coverage and the effect of the higher chemical potential of the active oxygen species may be reduced, if both oxidants yield a high surface coverage of the active oxygen species.

References

  1. Lee DG, Spitze UA (1975) Can J Chem 53:3709

    Article  CAS  Google Scholar 

  2. Jose N, Sengupta S, Basu KK (2009) J Mol Catal A Chem 309:153

    Article  CAS  Google Scholar 

  3. Lee GA, Freedman HH (1976) Tetrahedron Lett 20:1641

    Article  Google Scholar 

  4. Imai A, Togo H (2016) Tetrahedron 44:6948

    Article  CAS  Google Scholar 

  5. Joshi SR, Kataria KL, Sawant SB, Joshi JB (2005) Ind Eng Chem Res 44:325

    Article  CAS  Google Scholar 

  6. Li J, Li M, Sun H, Ao Z, Wang S, Liu S (2020) ACS Catal 10:3516

    Article  CAS  Google Scholar 

  7. Sadri F, Ramazani A, Massoudi A, Khoobi M, Tarasi R, Shafiee A, Azizkhani V, Dolatyari L, Joo SW (2014) Green Chem Lett Rev 7(2014):257–264

    Article  CAS  Google Scholar 

  8. Xiao S, Zhang C, Chen R, Chen F (2015) New J Chem 39:4924

    Article  CAS  Google Scholar 

  9. Kwamura K, Hatanaka T, Hamahiga K, Matsuda N, Ueshima M, Nakai K (2016) Chem Eng J 285:49

    Article  CAS  Google Scholar 

  10. Altaee H, Alshamsi HA (2020) J Phys Conf Ser 1664:012074

    Article  CAS  Google Scholar 

  11. Mallat T, Baiker A (2004) Chem Rev 104:3037

    Article  CAS  PubMed  Google Scholar 

  12. Ilyas M, Sadiq M (2007) Chem Eng Technol 30:1391

    Article  CAS  Google Scholar 

  13. Zhou CM, Chen YT, Guo Z, Wang X, Yang YH (2011) Chem Commun 47:7473

    Article  CAS  Google Scholar 

  14. Chen H, Tang QH, Chen YT, Yan YB, Zhou CM, Guo Z, Jia XL, Yang YH (2013) Catal Sci Technol 3:328

    Article  CAS  Google Scholar 

  15. Kunene A, van Heerden T, Gambu TG, van Steen E (2020) ChemCatChem 12:4760

    Article  CAS  Google Scholar 

  16. Hargreaves JSJ, Chun Y-M, Ahn W-S, Hisatomi T, Domen K, Kung MC, Kung HH (2020) Appl Catal A Gen 594:117419

    Article  CAS  Google Scholar 

  17. McEwen J-S, Bray JM, Wu C, Schneider WF (2012) Phys Chem Chem Phys 14:16677

    Article  CAS  PubMed  Google Scholar 

  18. Li K, Li Y, Wang Y, Hem F, Jiao M, Tang H, Wu Z (2015) J Mater Chem A 3:11444

    Article  CAS  Google Scholar 

  19. Gambu T, Petersen MA, van Steen E (2018) Catal Today 312:126

    Article  CAS  Google Scholar 

  20. Chibani S, Michel C, Delbeq F, Pinel C, Besson M (2013) Catal Sci Technol 3:339

    Article  CAS  Google Scholar 

  21. Panchenko A, Koper MTM, Shubina TE, Mitchell SJ, Roduner E (2004) J Electrochem Soc 151:A2016

    Article  CAS  Google Scholar 

  22. Balbuena PB, Calvo SR, Lamas EJ, Salazar PF, Seminario JM (2006) J Phys Chem B 110:17452

    Article  CAS  PubMed  Google Scholar 

  23. Duan Z, Wang GA (2011) Phys Chem Chem Phys 13:20178

    Article  CAS  PubMed  Google Scholar 

  24. Hammer B, Nørskov JK (2000) Adv Catal 45:71

    CAS  Google Scholar 

  25. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skúlason E, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99:016105

    Article  CAS  PubMed  Google Scholar 

  26. Rankin RB, Greeley J (2012) ACS Catal 2:2664

    Article  CAS  Google Scholar 

  27. Della Pina C, Falleta E, Rossi M (2008) J Catal 260:384

    Article  CAS  Google Scholar 

  28. Huang X, Wang X, Wang X, Wang X, Tan M, Ding W, Lu X (2013) J Catal 301:217

    Article  CAS  Google Scholar 

  29. Nagy G, Gál T, Sranká DF, Sárfán G, Maráti B, Sajá IE, Schmidt F-P, Beck A (2020) Mol Catal 492:110917

    Article  CAS  Google Scholar 

  30. Enache I, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Science 311:362

    Article  CAS  PubMed  Google Scholar 

  31. Zhao Z, Flores Espinos MM, Zhou J, Xue W, Duan X, Miao J, Huang Y (2019) Nano Res 12:1467

    Article  CAS  Google Scholar 

  32. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Science 315:493

    Article  CAS  PubMed  Google Scholar 

  33. Leteba G, Mitchell D, Levecque P, Macheli L, van Steen E, Lang C (2020) RSC Adv 10:29268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leteba G, Mitchell D, Levecque P, Macheli L, van Steen E, Lang C (2020) ACS Appl Nano Mater 3:5718

    Article  CAS  Google Scholar 

  35. Van den Tillaart JAA, Kuster BFM, Marin GBMM (1996) Catal Lett 36:31

    Article  Google Scholar 

  36. Xiao Q, Cai M, Balogh MP, Tessema MM, Lu Y (2012) Nano Res 5:145

    Article  CAS  Google Scholar 

  37. Wang C, Daimon H, Lee Y, Kim J, Sun S (2007) J Am Chem Soc 129:6974

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Fang J (2009) J Am Chem Soc 131:18543

    Article  CAS  PubMed  Google Scholar 

  39. Davey WP (1925) Phys Rev 25:753

    Article  CAS  Google Scholar 

  40. Hinde CS, Gill AM, Wells PP, Hor TSA, Raja R (2019) Chem Plus Chem 80: 1226

    Google Scholar 

  41. Mahdavi-Shakib A, Sempel J, Babb L, Oza A, Hoffman M, Whittaker TN, Chandler BD, Austin RN (2020) ACS Catalysis 10:10207

    Article  CAS  Google Scholar 

  42. Zhan G, Hong Y, Lu F, Ibrahim A-R, Du M, Sun D, Huang J, Li Q, Li J (2013) J Mol Catal A Chem 366:215

    Article  CAS  Google Scholar 

  43. Savara A, Rossetti I, Chan-Thaw C, Prati L, Villa A (2016) ChemCatChem 8:2482

    Article  CAS  Google Scholar 

  44. Galvanin F, Sankar M, Cattanei S, Bethell D, Dua V, Hutchings GJ, Gavrillidis A (2018) Chem Eng J 342:196

    Article  CAS  Google Scholar 

  45. Kim YS, Jeon SH, Bostwick A, Rotenberg E, Ross PN, Stamenkovic VR, Markovic NM, Noh TW, Han S, Mun BS (2013) Adv Energy Mater 3:1257

    Article  CAS  Google Scholar 

  46. Yang Z, Wang J, Yu X (2010) Chem Phys Lett 499:83

    Article  CAS  Google Scholar 

  47. Markusse AP, Kuster BFM, Koningsberger DC, Marin GB (1998) Catal Lett 55:141

    Article  CAS  Google Scholar 

  48. Besson M, Gallezot P (2000) Catal Today 57:127

    Article  CAS  Google Scholar 

  49. Ide MS, Falcone DD, Davis RJ (2014) J Catal 311:295

    Article  CAS  Google Scholar 

  50. Hu W, Xie J, Chau HW, Si BC (2015) Environ Syst Res 4:4

    Article  Google Scholar 

  51. Wang GC, Zhou Y-H, Nakamura J (2005) J Chem Phys 122:044707

    Article  CAS  Google Scholar 

  52. Nicoletti M, Whitesides GM (1989) J Phys Chem 93:759

    Article  CAS  Google Scholar 

  53. Mallat T, Baiker A (1994) Catal Today 19:247

    Article  CAS  Google Scholar 

  54. Zope BN, Davis RJ (2011) Green Chem 13:3484

    Article  CAS  Google Scholar 

  55. Sheng T, Lin W-F, Hardacre C, Hu P (2014) J Phys Chem C 118:5762

    Article  CAS  Google Scholar 

  56. Sankar M, Nowicka E, Carter E, Murphy DM, Knight DW, Bethell D, Hutchings GJ (2014) Nat Commun 5:3332

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported in part by the National Research Foundation (Grant No. 114606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric van Steen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunene, A., Leteba, G. & van Steen, E. Liquid Phase Oxidation of Benzyl Alcohol over Pt and Pt–Ni Alloy Supported on TiO2: Using O2 or H2O2 as Oxidant?. Catal Lett 152, 1760–1768 (2022). https://doi.org/10.1007/s10562-021-03760-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03760-z

Keywords

Navigation