Skip to main content
Log in

Highly Active Fe3O4@SBA-15@NHC-Pd Catalyst for Suzuki–Miyaura Cross-Coupling Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel Pd-NHC functionalized magnetic Fe3O4@SBA-15@NHC-Pd was synthesized and used as an efficient heterogeneous catalyst in the Suzuki–Miyaura C–C bond formation reactions. The Fe3O4@SBA-15@NHC-Pd characterized by X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray analysis (EDX), Thermogravimetric Analysis (TGA), Differential Thermal Analysis (DTA). The Inductively Coupled Plasma-Optical emission spectroscopy (ICP-OES) analysis was used to determine the exact amount of Pd (0.33 wt%) in Fe3O4@SBA-15@NHC-Pd. The TEM images of the catalyst showed the existence of palladium nanoparticles immobilized in the catalyst's structure, while no reducing agent was used. The NHC moieties in the catalyst structure could be stabilize Pd(0) nanoparticles prevents agglomeration. The magnetic catalyst was effectively used in the Suzuki–Miyaura cross-coupling reaction of substituted phenylboronic acid derivatives with (hetero)aryl bromides in the presence of a K2CO3 at room temperature in aqueous media and magnetic catalyst could be simply extracted from the reaction mixture by an external magnet. Different aryl bromides were converted to coupled-products in excellent yields with spectacular TOFs values (up to 1,960,339 h−1); in the presence of 1 mg of Fe3O4@SBA-15@NHC-Pd catalyst (contains 3.1 × 10–6 mol% Pd) at room temperature in aqueous media. After reusability experiments, it is found that this catalyst was effectively used up to ten times in the reaction with almost consistent catalytic efficiency. A decrease in the activity of the 10th reused catalyst was found as 9%.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen Y, Chen HR, Guo LM, He QJ, Chen F, Zhou J, Feng J, Shi J (2010) ACS Nano 4:529–539. https://doi.org/10.1021/nn901398j

    Article  CAS  PubMed  Google Scholar 

  2. Shi D, Cho HS, Chen Y, Xu H, Gu H, Lian J, Wang W, Liu G, Huth C, Wang L, Ewing RC, Budko S, Pauletti GM, Dong Z (2009) Adv Mater 21:2170–2173. https://doi.org/10.1002/adma.200803159

    Article  CAS  Google Scholar 

  3. Jafari AA, Mahmoudi H, Firouzabadi H (2015) RSC Adv 5:107474–107481. https://doi.org/10.1039/C5RA22909J

    Article  CAS  Google Scholar 

  4. Zhang SJ, Liu XH, Zhou LP, Peng WJ (2012) Mater Lett 68:243–246. https://doi.org/10.1016/j.matlet.2011.10.070

    Article  CAS  Google Scholar 

  5. Sing KSW (1985) Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  6. Yu L, Huang Y, Wei Z, Ding Y, Su C, Xu Q (2015) J Org Chem 80:8677–8683. https://doi.org/10.1021/acs.joc.5b01358

    Article  CAS  PubMed  Google Scholar 

  7. Begum T, Mondal M, Borpuzari MP, Kar R, Kalita G, Gogoi PK, Bora U (2017) Dalton Trans 46:539–546. https://doi.org/10.1039/C6DT03097A

    Article  CAS  PubMed  Google Scholar 

  8. Xu L, Liao J, Huang L, Ou D, Guo Z, Zhang H, Ge C, Gu N, Liu J (2003) Thin Solid Films 434:121–125. https://doi.org/10.1016/S0040-6090(03)00274-8

    Article  CAS  Google Scholar 

  9. Zhang L, Li P, Li H, Wang L (2012) Catal Sci Technol 2:1859–1864. https://doi.org/10.1039/C2CY20162C

    Article  CAS  Google Scholar 

  10. Keesara S, Parvathaneni S, Dussa G, Mandapati MR (2014) J Organomet Chem 765:31–38. https://doi.org/10.1016/j.jorganchem.2014.04.020

    Article  CAS  Google Scholar 

  11. Marset X, De Gea S, Guillena G, Ramón DJ (2018) ACS Sustain Chem Eng 6:5743–5748. https://doi.org/10.1021/acssuschemeng.8b00598

    Article  CAS  Google Scholar 

  12. Chen Y, Wang M, Zhang L, Liu Y, Han J (2017) RSC Adv 7:47104–47110. https://doi.org/10.1039/C7RA09947A

    Article  CAS  Google Scholar 

  13. Nasrollahzadeh M, Issaabadi Z, Tohidi MM, Mohammad Sajadi S (2018) Chem Rec 18:165–229. https://doi.org/10.1002/tcr.201700022

    Article  CAS  PubMed  Google Scholar 

  14. Komiyama T, Minami Y, Furuya Y, Hiyama T (2018) Angew Chem 130:2005–2008. https://doi.org/10.1002/anie.201712081

    Article  CAS  Google Scholar 

  15. Komiyama T, Minami Y, Furuya Y, Hiyama T (2018) Angew Chem Int Ed 57:1987–1990. https://doi.org/10.1002/anie.201712081

    Article  CAS  Google Scholar 

  16. Asgari MS, Zonouzi A, Rahimi R, Rabbani M (2015) Orient J Chem 31:1537–1544. https://doi.org/10.13005/ojc/310331

    Article  CAS  Google Scholar 

  17. Hoa ND, Duy NV, Safty SAE, Hieu NV (2015) J Nanomater 1:1–14. https://doi.org/10.1155/2015/972025

    Article  CAS  Google Scholar 

  18. Vavsari VF, Ziarani GM, Badiei A (2015) RSC Adv 5:91686–91707. https://doi.org/10.1039/C5RA17780D

    Article  CAS  Google Scholar 

  19. Ghorbani-Choghamarani A, Tahmasbi B, Noori N, Ghafouri-Nejad R (2017) J Iran Chem Soc 14:681–693. https://doi.org/10.1007/s13738-016-1020-x

    Article  CAS  Google Scholar 

  20. Adimoolam MG, Amreddy N, Rao Nalam M, Sunkara MV (2018) J Magn Magn Mater 448:199–207. https://doi.org/10.1016/j.jmmm.2017.09.018

    Article  CAS  Google Scholar 

  21. Saeedi MS, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Khosropour AR (2013) Polyhedron 49:158–166. https://doi.org/10.1016/j.poly.2012.09.026

    Article  CAS  Google Scholar 

  22. Tadic M, Kralj S, Lalatonne Y, Motte L (2019) Appl Surf Sci 476:641–646. https://doi.org/10.1016/j.apsusc.2019.01.098

    Article  CAS  Google Scholar 

  23. Mal K, Chatterjee S, Bhaumik A, Mukhopadhyay C (2019) Chemistry Select 4:1776–1784. https://doi.org/10.1002/slct.201803708646

    Article  CAS  Google Scholar 

  24. Nikoorazm M, Ghorbani-Choghamarani A, Noori N, Tahmasbi B (2016) Appl Organometal Chem 30:843–851. https://doi.org/10.1002/aoc.3512

    Article  CAS  Google Scholar 

  25. Nikoorazm M, Ghorbani Choghamarani A, Panahi A, Tahmasbi B, Noori N (2018) J Iran Chem Soc 15:181–189. https://doi.org/10.1007/s13738-017-1222-x

    Article  CAS  Google Scholar 

  26. Stevens PD, Li G, Fan J, Yen M, Gao Y (2005) Chem Commun 35:4435–4437. https://doi.org/10.1039/B505424A

    Article  Google Scholar 

  27. Ranganath KVS, Kloesges J, Schfer A, Glorius F (2010) Angew Chem 122:7952–7956. https://doi.org/10.1002/ange.201002782

    Article  Google Scholar 

  28. Lee JW, Cho DL, Shim WG, Moon H (2004) Korean J Chem Eng 21:246–251. https://doi.org/10.1007/BF02705405

    Article  CAS  Google Scholar 

  29. Corma A, Kumar D (1998) Stud Surf Sci Catal 117:201–222

    Article  CAS  Google Scholar 

  30. Sujandi S, Han SC, Han DS, Jin MJ, Park SE (2006) J Catal 243:410–419. https://doi.org/10.1016/j.jcat.2006.08.010

    Article  CAS  Google Scholar 

  31. Firouzabadi H, Iranpoor N, Gholinejad M, Hoseini J (2011) Adv Synth Catal 353:125–132. https://doi.org/10.1002/adsc.201000390

    Article  CAS  Google Scholar 

  32. Tang Y-Q, Lu J-M, Shao L-X (2011) J Organomet Chem 696:3741. https://doi.org/10.1016/j.jorganchem.2011.08.042

    Article  CAS  Google Scholar 

  33. Touj N, Gürbüz N, Hamdi N, Yasar S, Ozdemir I (2018) Inorg Chim Acta 478:187–194. https://doi.org/10.1016/j.ica.2018.04.018

    Article  CAS  Google Scholar 

  34. Touj N, Yasar S, Ozdemir N, Hamdi N, Ozdemir I (2018) J Organomet Chem 860:59–71. https://doi.org/10.1016/j.jorganchem.2018.01.017

    Article  CAS  Google Scholar 

  35. Boztepe C, Künkül A, Yaşar S, Gürbüz N (2018) J Organomet Chem 872:123–134. https://doi.org/10.1016/j.jorganchem.2018.07.004

    Article  CAS  Google Scholar 

  36. Dehimat ZI, Yaşar S, Tebbani D, Ozdemir I (2018) Inorg Chim Acta 469:325–334. https://doi.org/10.1016/j.ica.2017.09.048

    Article  CAS  Google Scholar 

  37. Yaşar S, Akkoç M, Ozdemir N, Ozdemir I (2019) Turk J Chem 43:1622–1633. https://doi.org/10.3906/kim-1907-74

    Article  CAS  Google Scholar 

  38. Akkoç M, İmik F, Dorcet V, Roisnel T, Bruneau C, Ozdemir I (2017) ChemistrySelect 2:5729–5734. https://doi.org/10.1002/slct.201701354

    Article  CAS  Google Scholar 

  39. Karaca EO, Akkoç M, Yaşar S, Ozdemir I (2018) Arkivoc part v:230–239. https://doi.org/10.2820/ark.5550190.p010.519

    Article  Google Scholar 

  40. Karaca EO, Akkoç M, Tahir MN, Arıcı C, Imik F, Gürbüz N, Yaşar S, Ozdemir I (2017) Tetrahedron Lett 58:3529–3532. https://doi.org/10.1016/j.tetlet.2017.07.096

    Article  CAS  Google Scholar 

  41. Beletskaya IP, Cheprakov AV (2000) Chem Rev 100:3009–3066. https://doi.org/10.1021/cr9903048

    Article  CAS  PubMed  Google Scholar 

  42. Imik F, Yaşar S, Ozdemir I (2019) Inorg Chim Acta 495:118969. https://doi.org/10.1016/j.ica.2019.118969

    Article  CAS  Google Scholar 

  43. Imik F, Yaşar S, Ozdemir I (2009) J Organomet Chem 896:162–167. https://doi.org/10.1016/j.jorganchem.2019.06.019

    Article  CAS  Google Scholar 

  44. Boubakri L, Yasar S, Dorcet V, Roisnel T, Bruneau C, Hamdib N, Ozdemir I (2017) New J Chem 41:5105–5113. https://doi.org/10.1039/C7NJ00488E

    Article  CAS  Google Scholar 

  45. Touj N, Yaşar S, Ozdemir N, Hamdi N, Ozdemir I (2018) J Organomet Chem 860:59–71. https://doi.org/10.1016/j.jorganchem.2018.01.017

    Article  CAS  Google Scholar 

  46. Gu Z-S, Shao L-X, Lu J-M (2012) J Organomet Chem 700:132–134. https://doi.org/10.1016/j.jorganchem.2011.11.030

    Article  CAS  Google Scholar 

  47. Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Small 7:425–443. https://doi.org/10.1002/smll.201001402

    Article  CAS  PubMed  Google Scholar 

  48. Veisi H, Hameliana M, Hemmati S (2014) J Mol Catal A 395:25–33. https://doi.org/10.1016/j.molcata.2014.07.030

    Article  CAS  Google Scholar 

  49. Le X, Dong Z, Jin Z, Wang Q, Ma J (2014) Catal Commun 53:47–52. https://doi.org/10.1016/j.catcom.2014.04.025

    Article  CAS  Google Scholar 

  50. Nikoorazm M, Ghorbani F, Ghorbani-Choghamarani A, Erfani Z (2017) Chin J Catal 38:1413–1422. https://doi.org/10.1016/S1872-2067(17)62865-1

    Article  CAS  Google Scholar 

  51. Khazaei A, Khazaei M, Nasrollahzadeh M (2017) Tetrahedron 73:5624–5633. https://doi.org/10.1016/j.tet.2017.05.054

    Article  CAS  Google Scholar 

  52. Elazab HA, Siamaki AR, Moussaa S, Guptona BF, El-Shall MS (2015) Appl Catal A 491:58–69. https://doi.org/10.1016/j.apcata.2014.11.033

    Article  CAS  Google Scholar 

  53. Tang W, Li J, Jin X, Sun J, Huang J, Li R (2014) Catal Commun 43:75–78. https://doi.org/10.1016/j.catcom.2013.09.001

    Article  CAS  Google Scholar 

  54. You S, Xiao R, Liu H, Cai M (2017) New J Chem 41:13862–13870. https://doi.org/10.1039/C7NJ02969A

    Article  CAS  Google Scholar 

  55. Shiri L, Tahmasbi B (2017) Phosphorus Sulfur Silicon Relat Elem 192:53–57. https://doi.org/10.1080/10426507.2016.1224878

    Article  CAS  Google Scholar 

  56. Mohamadi Tanuraghaj H, Farahi M (2019) New J. Chem. 43:4823–4829. https://doi.org/10.1039/C8NJ06415F

    Article  Google Scholar 

  57. Ghasemzadeh MS, Akhlaghinia B (2019) New J Chem 43:5341–5356. https://doi.org/10.1039/C9NJ00352E

    Article  CAS  Google Scholar 

  58. Tahmasbi B, Ghorbani-Choghamarani A (2019) New J Chem 43:14485–14501. https://doi.org/10.1039/C9NJ02727K

    Article  CAS  Google Scholar 

  59. Rafiee F, Mehdizadeh N (2018) Catal Lett 148:1345–1354. https://doi.org/10.1007/s10562-018-2363-y

    Article  CAS  Google Scholar 

  60. Tai Z, Isaacs MA, Parlett CMA, Lee AF, Wilson K (2017) Catal Commun 92:56–60. https://doi.org/10.1016/j.catcom.2017.01.004

    Article  CAS  Google Scholar 

  61. Keypour H, Saremi SG, Noroozi M, Veisi H (2017) Appl Organomet Chem 31:3558. https://doi.org/10.1002/aoc.3558

    Article  CAS  Google Scholar 

  62. Nuri A, Mansoori Y, Bezaatpour A, Shchukarev A, Mikkola JP (2019) ChemistrySelect 4:1820–1829. https://doi.org/10.1002/slct.201803798

    Article  CAS  Google Scholar 

  63. Peng X, Zhao Y, Yang T, Yang Y, Jiang Y, Ma Z, Li X, Hou J, Xi B, Liu H (2018) Microporous Mesoporous Mater 258:26–32. https://doi.org/10.1016/j.micromeso.2017.08.050

    Article  CAS  Google Scholar 

  64. Huang S, Yang P, Cheng Z, Li C, Fan Y, Kong D, Lin J (2008) J Phys Chem C 112:7130–7137. https://doi.org/10.1021/jp800363s

    Article  CAS  Google Scholar 

  65. Yaşar Ş, Köprülü TK, Tekin Ş, Yaşar S (2018) Inorg Chim Acta 479:17–23. https://doi.org/10.1016/j.ica.2018.04.035

    Article  CAS  Google Scholar 

  66. Yaşar Ş, Köprülü TK, Tekin Ş, Yaşar S (2018) Appl Organomet Chem 32:4016. https://doi.org/10.1002/aoc.4016

    Article  CAS  Google Scholar 

  67. Akkoç M, Balcıoğlu S, Gürses C, Tok TT, Ateş B, Yaşar S (2018) J Organomet Chem 869:67–74. https://doi.org/10.1016/j.jorganchem.2018.06.003

    Article  CAS  Google Scholar 

  68. Liu X, Ma Z, Xing J, Liu H (2004) Magn Magn Mater 270:1–6. https://doi.org/10.1016/j.jmmm.2003.07.006

    Article  CAS  Google Scholar 

  69. Mondal J, Sreejith S, Borah P, Zhao Y, Sustain ACS (2014) Chem Eng 2:934–941. https://doi.org/10.1021/sc400530a

    Article  CAS  Google Scholar 

  70. Choghamarani AG, Tahmasbi B, Moradi P, Havasi N (2016) Appl Organometal Chem 30:619–625. https://doi.org/10.1002/aoc.3478

    Article  CAS  Google Scholar 

  71. Nikoorazm M, Moradi P, Noori N (2020) J Porous Mater 27:1159–1169. https://doi.org/10.1007/s10934-020-00894-0

    Article  CAS  Google Scholar 

  72. Moradi P, Hajjami M, Tahmasbi B (2020) Polyhedron 175:114169. https://doi.org/10.1016/j.poly.2019.114169

    Article  CAS  Google Scholar 

  73. Nikoorazm M, Tahmasbi B, Gholami S, Moradi P (2020) Appl Organomet Chem 34:e5919. https://doi.org/10.1002/aoc.591

    Article  CAS  Google Scholar 

  74. Huang Y, Tang J, Gai L, Gong Y, Guang H, He R, Lyu H (2017) Chem Eng J 319:229–239. https://doi.org/10.1016/j.cej.2017.03.015

    Article  CAS  Google Scholar 

  75. Wang X, Pan H, Lin Q, Wu H, Jia S, Shi Y (2019) Nanoscale Res Lett 14:259. https://doi.org/10.1186/s11671-019-3075-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu LQ, Li YC, Li SQ, Li ZZ, Tang GD, Qi WH, Xue LC, Ge XS, Ding LL (2015) AIP Adv 5:097210. https://doi.org/10.1063/1.4931996

    Article  CAS  Google Scholar 

  77. Ahmed IAM, Maher BA (2018) PNAS 115:1736–1741. https://doi.org/10.1073/pnas.1719186115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Heidari F, Hekmati M, Veisi H (2017) J Colloid Interface Sci 501:175–184. https://doi.org/10.1016/j.jcis.2017.04.054

    Article  CAS  PubMed  Google Scholar 

  79. Nikoorazm M, Ghorbani F, Ghorbani-Choghamarani A, Erfani Z (2017) Chin J Catal 38:1413–1422. https://doi.org/10.1016/S1872-2067(17)62865-1

    Article  CAS  Google Scholar 

  80. Baran T, Acıksöz E, Mentes A (2015) J Mol Catal A 407:47–52. https://doi.org/10.1016/j.molcata.2015.06.008

    Article  CAS  Google Scholar 

  81. Singha Roy A, Mondal J, Banerjee B, Mondal P, Bhaumik A, Manirul Islam S (2014) Appl Catal A 469:320–327. https://doi.org/10.1016/j.apcata.2013.10.017

    Article  CAS  Google Scholar 

  82. Ghorbani-Choghamarani A, Moradi P, Tahmasbi B (2019) Polyhedron 163:98–107. https://doi.org/10.1016/j.poly.2019.02.004

    Article  CAS  Google Scholar 

  83. Dong Y, Wu X, Chen X, Wei Y (2017) Carbohydr Polym 160:106–114. https://doi.org/10.1016/j.carbpol.2016.12.044

    Article  CAS  PubMed  Google Scholar 

  84. Sobhani S, Ghasemzadeh MS, Honarmand M, Zarifi F (2014) RSC Adv 4:44166–44174. https://doi.org/10.1039/C4RA04830J

    Article  CAS  Google Scholar 

  85. Wang X, Hu P, Xue F, Wei Y (2014) Carbohydr Polym 114:476–483. https://doi.org/10.1016/j.carbpol.2014.08.030

    Article  CAS  PubMed  Google Scholar 

  86. Wang D, Liu W, Bian F, Yu W (2015) New J Chem 39:2052–2059. https://doi.org/10.1039/C4NJ01581A

    Article  CAS  Google Scholar 

  87. Ke H, Chen X, Zou G (2014) Appl Organometal Chem 28:54–60. https://doi.org/10.1002/aoc.3076

    Article  CAS  Google Scholar 

  88. Karimi B, Akhavan PF (2011) Chem Commun 47:7686–7688. https://doi.org/10.1039/C1CC00017A

    Article  CAS  Google Scholar 

  89. Khajehzadeh M, Moghadam M (2018) J Organomet Chem 863:60–69. https://doi.org/10.1016/j.jorganchem.2018.03.030

    Article  CAS  Google Scholar 

  90. Esmaeilpour M, Sardarian AR, Firouzabadi H (2018) J Organomet Chem 873:22–34. https://doi.org/10.1016/j.jorganchem.2018.08.002

    Article  CAS  Google Scholar 

  91. Akkoç M, Buğday N, Altın S, Yaşar S (2021). Appl Organomet Chem. https://doi.org/10.1002/aoc.6233

    Article  Google Scholar 

  92. Akkoç M, Buğday N, Altın S, Kiraz N, Yaşar S, Özdemir İ (2021) J Organomet Chem 943:121823. https://doi.org/10.1016/j.jorganchem.2021.121823

    Article  CAS  Google Scholar 

Download references

Acknowledgements

XPS and TEM studies performed in France (CEA LETI/DTSI/SCMC Grenoble Cedex 9 FRANCE and thanks to N. GAMBACORTI for the organization of XPS and TEM analysis) within the framework of the NFFA-Europe Transnational Access Activity (NFFA Project ID: 723).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mitat Akkoç or Sedat Yaşar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkoç, M., Buğday, N., Altın, S. et al. Highly Active Fe3O4@SBA-15@NHC-Pd Catalyst for Suzuki–Miyaura Cross-Coupling Reaction. Catal Lett 152, 1621–1638 (2022). https://doi.org/10.1007/s10562-021-03755-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03755-w

Keywords

Navigation