Skip to main content

Eco-Friendly Natural Clay: Montmorillonite Modified with Nickel or Ruthenium as an Effective Catalyst in Gamma-Valerolactone Synthesis

Abstract

Ni/Ru metals supported on cheap and available support montmorillonite K10 were used for the selective hydrogenation of levulinic acid to γ-valerolactone. Different loadings of the metals were applied by the impregnation method, and detailed characterization was performed (UV–VIS, XRD, TPR, TPD, particle size distribution, SEM, XRF). Metals’ homogeneous distribution on the surface was confirmed. The selectivity to the desired product was almost independent on the used material. A detailed study of the influence of solvents on the studied reaction was also performed—protic alcohol-based solvents caused the formation of levulinic and valeric acid esters in the reaction mixture. The selectivity was influenced mainly by the alcohol structure (the highest selectivity obtained using isopropyl alcohol and sec-butanol). Mainly the solvent’s donor number (except ethanol) influenced the reaction rate. The prepared catalysts are promising, available, and cheap materials for the studied reaction. Solvent may significantly influence the yield of γ-valerolactone.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Feng J, Li M, Zhong Y, Xu Y, Meng X, Zhao Z, Feng C (2020) Microporous Mesoporous Mater 294:109858

    CAS  Article  Google Scholar 

  2. Varkolu M, Velpula V, Burri DR, Kamaraju SRR (2016) New J Chem 40:3261

    CAS  Article  Google Scholar 

  3. Cao W, Luo W, Ge H, Su Y, Wang A, Zhang T (2017) Green Chem 19:2201

    CAS  Article  Google Scholar 

  4. Wu L, Song J, Zhou B, Wu T, Jiang T, Han B (2016) Chem—Asian J 11:2792

    CAS  Article  Google Scholar 

  5. Tan J, Cui J, Deng T, Cui X, Ding G, Zhu Y, Li Y (2015) ChemCatChem 7:508

    CAS  Article  Google Scholar 

  6. Cao S, Monnier JR, Regalbuto JR (2017) J Catal 347:72

    CAS  Article  Google Scholar 

  7. Wang S, Dorcet V, Roisnel T, Bruneau C, Fischmeister C (2017) Organometallics 36:708

    CAS  Article  Google Scholar 

  8. Wang S, Huang H, Dorcet V, Roisnel T, Bruneau C, Fischmeister C (2017) Organometallics 36:3152

    CAS  Article  Google Scholar 

  9. Zhang D, Zhao YP, Fan X, Liu ZQ, Wang RY, Wei XY (2018) Catal Surv Asia 22:129

    Article  Google Scholar 

  10. Gundeboina R, Velisoju VK, Gutta N, Medak S, Aytam HP (2019) React Kinet Mech Catal 127:601

    CAS  Article  Google Scholar 

  11. Zhang R, Ma Y, You F, Peng T, He Z, Li K (2017) Int J Hydrog Energy 42:25185

    CAS  Article  Google Scholar 

  12. Zhang B, Chen Y, Li J, Pippel E, Yang H, Gao Z, Qin Y (2015) ACS Catal 5:5567

    CAS  Article  Google Scholar 

  13. Lomate S, Sultana A, Fujitani T (2017) Catal Sci Technol 7:3073

    CAS  Article  Google Scholar 

  14. Long X, Sun P, Li Z, Lang R, Xia C, Li F (2015) Cuihua Xuebao 36:1512

    CAS  Google Scholar 

  15. Murugesan K, Alshammari AS, Sohail M, Jagadeesh RV (2019) ACS Sustain Chem Eng 7:14756

    CAS  Article  Google Scholar 

  16. Vrbková E, Skýpala T, Vyskočilová E, Červený L (2015) Res Chem Intermed 41:9195

    Article  Google Scholar 

  17. Liu X, Lan G, Su P, Qian L, Reina TR, Wang L, Li Y, Liu J (2020) Catal Today 351:75

    CAS  Article  Google Scholar 

  18. Tao H, Ding J, Xie C, Gao Y, Song J, Sun Z (2018) Nanotechnology 97:075708

    Article  Google Scholar 

  19. Vrbková E, Vyskočilová E, Rott M, Zapletal M, Červený L (2017) Res Chem Intermed 43:2603

    Article  Google Scholar 

  20. Yoshida R, Sun D, Yamada Y, Sato S, Hutchings GJ (2017) Catal Commun 97:79

    CAS  Article  Google Scholar 

  21. Ishikawa S, Jones DR, Iqbal S, Reece C, Morgan DJ, Willock DJ, Miedziak PJ, Bartley JK, Edwards JK, Murayama T, Ueda W, Hutchings GJ (2017) Green Chem 19:225

    CAS  Article  Google Scholar 

  22. Fu SY, Li YZ, Chu W, Li C, Tong DG (2015) Catal Sci Technol 5:1638

    CAS  Article  Google Scholar 

  23. Vrbková E, Prejza T, Lhotka M, Vyskočilová E, Červený L (2021) Catal Lett 151:1993

    Article  Google Scholar 

  24. Vrbková E, Šteflová B, Vyskočilová E, Červený L (2020) React Kinet Mech Catal 131:213

    Article  Google Scholar 

  25. Vrbková E, Šteflová B, Zapletal M, Vyskočilová E, Červený L (2020) Res Chem Intermed 46:4047

    Article  Google Scholar 

  26. Vrbková E, Šteflová B, Sekerová L, Krupka J, Vyskočilová E, Červený L (2020) React Kinet Mech Catal 129:645

    Article  Google Scholar 

  27. Jiang B, Zhang C, Wang K, Dou B, Song Y, Chen H, Xu Y (2016) Appl Therm Eng 109:99

    CAS  Article  Google Scholar 

  28. Zhao YH, Hao QQ, Song YH, Fan WB, Liu ZT, Liu ZW (2013) Energy Fuel 27:6362

    CAS  Article  Google Scholar 

  29. Shi J, Hui F, Yuan J, Yu Q, Mei S, Zhang Q, Li J, Wang W, Yang J, Lu J (2019) Catalysts 9:108

    Article  Google Scholar 

  30. Karthik K, Kalai Selvan G, Kanagaraj M, Arumugam S, Victor Jaya N (2011) J Alloys Compd 509:181

    CAS  Article  Google Scholar 

  31. Ma X, Fan Y, Dong X, Chen R, Li H, Sun D, Yao S (2018) Minerals 8:400

    Article  Google Scholar 

  32. Sekerová L, Černá H, Vyskočilová E, Vrbková E, Červený L (2021). Catal Lett. https://doi.org/10.1007/s10562-020-03514-3

    Article  Google Scholar 

  33. Rao GR, Mishra BG (2005) Mater Chem Phys 89:110

    CAS  Article  Google Scholar 

  34. Derle SN, Parikh PA (2014) Biomass Convers Biorefinery 4:293

    CAS  Article  Google Scholar 

  35. https://www.engineeringtoolbox.com/paraffinic-benzoic-hydroxy-dioic-acids-structure-pkacarboxylic-dissociation-constant-alcohol-phenol-d_1948.html. Accessed 5 Mar 2021

  36. https://owl.oit.umass.edu/departments/OrganicChemistry/appendix/pKaTable.html. Accessed 5 Mar 2021

  37. https://go.drugbank.com/drugs/DB03316. Accessed 5 Mar 2021

  38. Gutmann V (1978) The donor-acceptor approach to molecular interactions. Plenum Press, New York

    Book  Google Scholar 

  39. Reichardt C (2003) Solvents and solvent effects in organic chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  40. Dyson PJ, Jessop PG (2016) Catal Sci Technol 6:3302

    CAS  Article  Google Scholar 

  41. Yan L, Yao Q, Fu Y (2017) Green Chem 19:5527

    CAS  Article  Google Scholar 

  42. Cardoso AL, Neves SCG, da Silva MJ (2009) Energy Fuels 23:1718

    CAS  Article  Google Scholar 

  43. Braga VS, Barros ICL, Garcia FAC, Dias SCL, Dias JA (2008) Catal Today 133:106

    Article  Google Scholar 

  44. Kastratović V, Bigović M (2018) Chem Ind Chem Eng Q 24:283

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank to Miloslav Lhotka for measuring nitrogen physisorption and Martin Veselý for STEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eliška Vyskočilová or Eva Vrbková.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 833 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vyskočilová, E., Vrbková, E., Trejbal, J. et al. Eco-Friendly Natural Clay: Montmorillonite Modified with Nickel or Ruthenium as an Effective Catalyst in Gamma-Valerolactone Synthesis. Catal Lett 152, 1417–1427 (2022). https://doi.org/10.1007/s10562-021-03740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03740-3

Keywords

  • γ-Valerolactone
  • Levulinic acid
  • Montmorillonite K10
  • Nickel
  • Ruthenium