Skip to main content
Log in

Cu(II)-Based Ionic Liquid Supported on SBA-15 Nanoparticles Catalyst for the Oxidation of Various Alcohols into Carboxylic Acids in the Presence of CO2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this paper, we have produced carboxylic acids by the oxidation of various alcohols in the presence of CO2 using SBA-15/IL supported Cu(II) (SBA-15/IL/Cu(II)) as nanocatalyst. The obtained products showed to have excellent yields by taking into account of SBA-15/IL/Cu(II) nanocatalyst. In addition, the analysis of EDX, SEM, TGA, TEM, XPS, and FT-IR showed the heterogeneous structure of SBA-15/IL/Cu (II) catalyst. It is determined that, after using SBA-15 excess, the catalytic stability of the system was enhanced. Moreover, hot filtration provided a full vision in the heterogeneous catalyst nature. The recycling as well as reuse of the catalyst were studied in cases of coupling reactions many times. Moreover, we have studied the mechanism of the coupling reactions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Moore E, McInnes SJ, Vogt A, Voelker NH (2011) Tetrahedron Lett 52:2327

    Article  CAS  Google Scholar 

  2. Chassaing S, Sido ASS, Alix A, Kumarraja M, Pale P (2008) Chem Eur J 14:6713–6721

    Article  CAS  Google Scholar 

  3. Yousuf SK, Mukherjee D, Singh B, Maity S, Taneja SC (2010) Green Chem 12:1568–1572

    Article  CAS  Google Scholar 

  4. Lee CT, Huang S, Lipshutz BH (2009) Adv Synth Catal 351:3139

    Article  CAS  Google Scholar 

  5. Wang K, Bi X, Liao P, Fang Z, Meng X, Zhang Q, Liu Q, Ji Y (2011) Green Chem 13:562–565

    Article  CAS  Google Scholar 

  6. Chanda K, Rej S, Huang MH (2013) Chem Eur J 19:16036–16043

    Article  CAS  Google Scholar 

  7. Larin EM, Lautens M (2019) Angew Chem Int Ed 58:13438–13442

    Article  CAS  Google Scholar 

  8. Lal K, Rani P (2016) ARKIVOC 2016(1):307–341. https://doi.org/10.3998/ark.5550190.p009.593

    Article  CAS  Google Scholar 

  9. Kuang GC, Guha PM, Brotherton WS, Simmons JT, Stankee LA, Nguyen BT, Clark RJ, Zhu L (2011) J Am Chem Soc 133:13984–14001

    Article  CAS  Google Scholar 

  10. Harmand L, Lescure MH, Candelon N, Duttine M, Lastécouères D, Vincent JM (2012) Tetrahedron Lett 53:1417–1420

    Article  CAS  Google Scholar 

  11. Sadeghzadeh SM, Zhiani R, Moradi M (2018) ChemistrySelect 3:3516–3522

    Article  CAS  Google Scholar 

  12. Diagboya PN, Mtunzi FM, Düring RA, Olu-Owolabi BI (2021) Ind Eng Chem Res 60:2365–2373

    Article  CAS  Google Scholar 

  13. Xikhongelo RV, Mtunzi FM, Diagboya PN, Olu-Owolabi B, Düring RA (2021) Ind Eng Chem Res 60:3957–3968

    Article  CAS  Google Scholar 

  14. Sadeghi S, Karimi M, Radfar I, GhahremaniGavinehroudi R, SaberiHeydari DA (2021) New J Chem 45:6682–6692

    Article  CAS  Google Scholar 

  15. Manno R, Sebastian V, Irusta S, Mallada R, Santamaria J (2021) Catal Today 362:81–89

    Article  CAS  Google Scholar 

  16. Hu N, Ning P, He L, Guan Q, Shi Y, Miao R (2021) Renew Energy 170:1–11

    Article  CAS  Google Scholar 

  17. Hosseini HG, Doustkhah E, Kirillova MV, Rostamnia S, Mahmoudi G, Kirillov AM (2017) Appl Catal A Gen 548:96–102

    Article  CAS  Google Scholar 

  18. Rostamnia S, Doustkhah E, Zeynizadeh B (2016) Microporous Mesoporous Mater 222:87–93

    Article  CAS  Google Scholar 

  19. Rostamnia S, Golchin Hossieni H, Doustkhah E (2015) J Organomet Chem 791:18–23

    Article  CAS  Google Scholar 

  20. Rostamnia S, Doustkhah E, Bulgar R, Zeynizadeh B (2016) Microporous Mesoporous Mater 225:272–279

    Article  CAS  Google Scholar 

  21. Baghbamidi SE, Hassankhani A, Sanchooli E, Sadeghzadeh SM (2018) Appl Organomet Chem 32(4):e4251

    Article  Google Scholar 

  22. Hu YL, Zhang RL, Fang D (2019) Environ Chem Lett 17:501–508

    Article  CAS  Google Scholar 

  23. Yao N, Chen C, Li DJ, Hu YL (2020) J Environ Chem Eng 8:103953

    Article  CAS  Google Scholar 

  24. Jin T, Dong F, Liu Y, Hu YL (2019) New J Chem 43:2583–2590

    Article  CAS  Google Scholar 

  25. Sadeghzadeh SM (2015) RSC Adv 5:17319–17324

    Article  CAS  Google Scholar 

  26. Tomalia DA (2012) New J Chem 36:264–281

    Article  CAS  Google Scholar 

  27. Giacalone F, Campisciano V, Calabrese C, Parola VL, Syrgiannis Z, Prato M (2016) ACS Nano 10:4627–4636

    Article  CAS  Google Scholar 

  28. Sadjadi S, Malmir M, Heravi MM (2019) Appl Clay Sci 168:184–195

    Article  CAS  Google Scholar 

  29. Murugan E, Jebaranjitham JN, Raman KJ, Mandal A, Geethalakshmi D, Kumarc MD, Saravanakumarc A (2017) New J Chem 41:10860–10871

    Article  CAS  Google Scholar 

  30. Qin TY, Li XY, Chen JP, Zeng Y, Yu TJ, Yang GQ, Li Y (2014) Chem Asian J 9:3641–3649

    Article  CAS  Google Scholar 

  31. Hayouni S, Robert A, Maes C, Conreux A, Marin B, Mohamadou A (2018) New J Chem 42:18010–18020

    Article  CAS  Google Scholar 

  32. Balaraman E, Khaskin E, Leitus G, Milstein D (2013) Nat Chem 5:122–125

    Article  CAS  Google Scholar 

  33. Thottathil JK, Moniot JL, Mueller RH, Wong MKY, Kissick TP (1986) J Org Chem 51:3140–3143

    Article  CAS  Google Scholar 

  34. Abiko A, Roberts JC, Takemasa T, Masamune S (1986) Tetrahedron Lett 27:4537–4540

    Article  CAS  Google Scholar 

  35. Zhang L, Wu Z, Nelson NC, Sadow AD, Slowing II, Overbury SH (2015) ACS Catal 5:6426–6435

    Article  CAS  Google Scholar 

  36. Ryland BL, Stahl SS (2014) Angew Chem Int Ed 53:8824–8832

    Article  CAS  Google Scholar 

  37. Heyns K (1947) Justus Lieb Ann Chem 558:177

    Article  CAS  Google Scholar 

  38. Han L, Xing P, Jiang B (2014) Org Lett 16:3428–3433

    Article  CAS  Google Scholar 

  39. Shi Z, Su Q, Ying T, Tan X, Deng L, Dong L, Cheng W (2020) J CO2 Util 39:101162. https://doi.org/10.1016/j.jcou.2020.101162

    Article  CAS  Google Scholar 

  40. Wang Y, Wu ZK, Yu H, Han S, Wei Y (2020) Green Chem 22:3150–3154

    Article  CAS  Google Scholar 

  41. Riemer D, Mandaviya B, Schilling W, Götz AC, Kühl T, Finger M, Das S (2018) ACS Catal 8:3030–3034

    Article  CAS  Google Scholar 

  42. Hirapara P, Riemer D, Hazra N, Gajera J, Finger M, Das S (2017) Green Chem 19:5356–5360

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Young Innovative Talents Project of Guangdong Provincial (No. 2020KQNCX242); the Innovative Team Program of Guangdong Province (No. 2020KCXTD057); the Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515011188).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Peng or Seyed Mohsen Sadeghzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Hou, D., Chen, Y. et al. Cu(II)-Based Ionic Liquid Supported on SBA-15 Nanoparticles Catalyst for the Oxidation of Various Alcohols into Carboxylic Acids in the Presence of CO2. Catal Lett 152, 1308–1320 (2022). https://doi.org/10.1007/s10562-021-03736-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03736-z

Keywords

Navigation