Skip to main content

Advertisement

Log in

Insight Into the CuOx Interacts with Oxygen Vacancies on the Surface of Black-TiO2 for NO Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Designing non-precious catalysts to synergistically expose high active sites and exhibit optimized NO oxidation activity still remains a big challenge. Herein, a low-cost and high-active CuOx/black-TiO2 catalyst was prepared by impregnation method for NO oxidation. The CuOx/black-TiO2 (molar ratio of Cu/Ti is 0.05) exhibited the highest NO oxidation efficiency (53.43%) at 350 °C, which was higher than that of corresponding CuOx/TiO2 (38.86%) catalyst. Moreover, the kinetics of NO conversion over CuOx/black-TiO2 and CuOx/TiO2 catalysts were also studied. Raman spectra results indicated that CuOx interacted strongly with oxygen vacancies on the surface of black-TiO2. XPS further proved that electrons transferred from black-TiO2 to CuOx, leading to a higher proportion of Cu+ on CuOx/black-TiO2 than that of CuOx/TiO2. In addition, CuOx/black-TiO2 exhibited better reduction property and bigger adsorption capacity of NO and O2 than those of CuO/TiO2, confirming by H2-TPR and NO (O2)-TPD, respectively. Finally, the possible mechanism of CuOx/black-TiO2 for NO oxidation was proposed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aguia C, Angelo J, Madeira LM et al (2011) Photo-oxidation of NO using an exterior paint-screening of various commercial titania in powder pressed and paint films. J Environ Manag 92(7):1724–1732

    Article  CAS  Google Scholar 

  2. Chaloulakou A, Mavroidis I, Gavriil I (2008) Compliance with the annual NO2 air quality standard in Athens. Required NOx levels and expected health implications. Atmos Environ 42(3):454–465

    Article  CAS  Google Scholar 

  3. Nguyen HH, Gyawali G, Martinez-Oviedo A et al (2020) Modified blue TiO2 nanostructures for efficient photo-oxidative removal of harmful NOx gases. Korean J Chem Eng 37(9):1507–1514

    Article  CAS  Google Scholar 

  4. Muneer S, Lee JH (2018) Hazardous gases (CO, NOx, CH4 and C3H8) released from CO2 fertilizer unit lead to oxidative damage and degrades photosynthesis in strawberry plants. Sci Rep 8(1):12291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Li X, Zhang S, Jia Y et al (2012) Selective catalytic oxidation of NO with O2 over Ce-doped MnOx/TiO2 catalysts. J Nat Gas Chem 21(1):17–24

    Article  CAS  Google Scholar 

  6. Han L, Cai S, Gao M (2019) Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects. Chem Rev 119:10916–10976

    Article  CAS  PubMed  Google Scholar 

  7. Locci C, Vervisch L, Farcy B et al (2017) Selective non-catalytic reduction (SNCR) of nitrogen oxide emissions: a perspective from numerical modeling. Flow Turbul Combust 100(2):301–340

    Article  CAS  Google Scholar 

  8. Zhang Y, Yu Y, He H (2016) Oxygen vacancies on nanosized ceria govern the NOx storage capacity of NSR catalysts. Catal Sci Technol 6(11):3950–3962

    Article  CAS  Google Scholar 

  9. Park SM, Park JW, Ha H-P et al (2007) Storage of NO2 on potassium oxide co-loaded with barium oxide for NOx storage and reduction (NSR) catalysts. J Mol Catal A Chem 273(1–2):64–72

    Article  CAS  Google Scholar 

  10. Giménez-Mañogil J, Bueno-López A, García-García A (2014) Preparation, characterisation and testing of CuO/Ce0.8Zr0.2O2 catalysts for NO oxidation to NO2 and mild temperature diesel soot combustion. Appl Catal B Environm 152–153:99–107

    Article  CAS  Google Scholar 

  11. Shen Q, Lu G, Du C et al (2013) Role and reduction of NOx in the catalytic combustion of soot over iron–ceria mixed oxide catalyst. Chem Eng J 218:164–172

    Article  CAS  Google Scholar 

  12. Koebel M, Elsener M, Kleemann M (2000) Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines. Catal Today 59:335–345

    Article  CAS  Google Scholar 

  13. Zeng Y, Wang Y, Zhang S et al (2018) A study on the NH3-SCR performance and reaction mechanism of a cost-effective and environment-friendly black TiO2 catalyst. Phys Chem Chem Phys 20(35):22744–22752

    Article  CAS  PubMed  Google Scholar 

  14. Wei T, Zhu Y-N, Gu Z et al (2018) Multi-electric field modulation for photocatalytic oxygen evolution: enhanced charge separation by coupling oxygen vacancies with faceted heterostructures. Nano Energy 51:764–773

    Article  CAS  Google Scholar 

  15. An X, Zhang L, Wen B et al (2017) Boosting photoelectrochemical activities of heterostructured photoanodes through interfacial modulation of oxygen vacancies. Nano Energy 35:290–298

    Article  CAS  Google Scholar 

  16. Li C, Sun Z, Song A et al (2018) Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO2/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum. Appl Catal B 236:76–87

    Article  CAS  Google Scholar 

  17. Han C, Zhang S, Guo L et al (2018) Ehanced catalytic ozonation of NO over black-TiO2 catalyst under inadequate ozone (O3/NO molar ratio = 0.6). Chem Eng Res Des 136:219–229

    Article  CAS  Google Scholar 

  18. Lomachenko KA, Borfecchia E, Negri C et al (2016) The Cu-CHA deNOx catalyst in action: temperature-dependent NH3-assisted selective catalytic reduction monitored by Operando XAS and XES. J Am Chem Soc 138(37):12025–12028

    Article  CAS  PubMed  Google Scholar 

  19. Zeng Y, Wang Y, Song F et al (2020) The effect of CuO loading on different method prepared CeO2 catalyst for toluene oxidation. Sci Total Environ 712:135635

    Article  CAS  PubMed  Google Scholar 

  20. Gao Y, Zhang Z, Li Z et al (2020) Understanding morphology-dependent CuO-CeO2 interactions from the very beginning. Chin J Catal 41(6):1006–1016

    Article  CAS  Google Scholar 

  21. Wu G, Guan N, Li L (2011) Low temperature CO oxidation on Cu–Cu2O/TiO2 catalyst prepared by photodeposition. Catal Sci Technol 1:601–608

    Article  CAS  Google Scholar 

  22. Meng F, Zhang M, Zhou F et al (2020) CrOx anchored on the black-TiO2 surface via organic carboxylic acid ligand and its catalysis in oxidation of NO. Catal Lett 151(6):1–11

    Google Scholar 

  23. Meng F, Zhang S, Li X et al (2019) CrOx assembled at the oxygen vacancies on black-TiO2 for NO oxidation. Mol Catal 473:110393

    Article  CAS  Google Scholar 

  24. Atribak I, Guillén-Hurtado N, Bueno-López A et al (2010) Influence of the physico-chemical properties of CeO2–ZrO2 mixed oxides on the catalytic oxidation of NO to NO2. Appl Surf Sci 256(24):7706–7712

    Article  CAS  Google Scholar 

  25. Zeng Y, Wang T, Zhang S et al (2017) Sol–gel synthesis of CuO-TiO2 catalyst with high dispersion CuO species for selective catalytic oxidation of NO. Appl Surf Sci 411:227–234

    Article  CAS  Google Scholar 

  26. Kim JM, Stucky GD (2000) Synthesis of highly ordered mesoporous silica materials using sodium silicate and amphiphilic block copolymers. Chem Commun 13:1159–1160

    Article  Google Scholar 

  27. Pushkarev VV, Kovalchuk VI et al (2004) Probing defect sites on the CeO2 surface with dioxygen. J Phys Chem B 108:5341–5348

    Article  CAS  Google Scholar 

  28. You R, Zhang Y, Liu D et al (2014) YCeZrO ternary oxide solid solution supported nonplatinic lean-burn NOx trap catalysts using LaCoO3 perovskite as active phase. J Phys Chem C 118(44):25403–25420

    Article  CAS  Google Scholar 

  29. Fan L, Zhang J, Ma K et al (2021) Ceria morphology-dependent Pd-CeO2 interaction and catalysis in CO2 hydrogenation into formate. J Catal 397:116–127

    Article  CAS  Google Scholar 

  30. Zhu L, Zeng Y, Zhang S et al (2017) Effects of synthesis methods on catalytic activities of CoOx-TiO2 for low-temperature NH3-SCR of NO. J Environ Sci 54:277–287

    Article  CAS  Google Scholar 

  31. Zedan A, Allam N, AlQaradawi S (2017) A study of low-temperature CO oxidation over mesoporous CuO-TiO2 nanotube catalysts. Catalysts 7(12):129

    Article  CAS  Google Scholar 

  32. Wang S, Zhang Z, Huo W et al (2021) Single-crystal-like black Zr-TiO2 nanotube array film: an efficient photocatalyst for fast reduction of Cr (VI). Chem Eng J 403:126331

    Article  CAS  Google Scholar 

  33. Jingli H, Xiaolong T, Honghong Y et al (2014) Low-temperature selective catalytic oxidation of ammonia over the CuOx/C-TiO2 catalyst. Res Chem Intermed 41(8):5743–5752

    Article  CAS  Google Scholar 

  34. Pai MR, Banerjee AM, Rawool SA et al (2016) A comprehensive study on sunlight driven photocatalytic hydrogen generation using low cost nanocrystalline Cu-Ti oxides. Sol Energy Mater Sol Cells 154:104–120

    Article  CAS  Google Scholar 

  35. Hu X, Song J, Luo J et al (2021) Single-atomic Pt sites anchored on defective TiO2 nanosheets as a superior photocatalyst for hydrogen evolution. J Energy Chem 62:1–10

    Article  Google Scholar 

  36. Kam R, Selomulya C, Amal R et al (2010) The influence of La-doping on the activity and stability of Cu/ZnO catalyst for the low-temperature water–gas shift reaction. J Catal 273(1):73–81

    Article  CAS  Google Scholar 

  37. Chusuei CC, Brookshier MA, Goodman DW (1999) Correlation of relative X-ray photoelectron spectroscopy shake-up intensity with CuO particle size. Langmuir 15:2806–2808

    Article  CAS  Google Scholar 

  38. Garbassi F, Petrini G (1984) XPS study on the low-temperature CO shift reaction catalyst. J Catal 90:106–112

    Article  CAS  Google Scholar 

  39. Wei-Lin D, Qi S, Jing-Fa D et al (2001) XPS studies of Cu/ZnO/Al2O3 ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2+H2. Appl Surf Sci 177:172–179

    Article  Google Scholar 

  40. Liu Y, Wang Z, Huang W (2016) Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts. Appl Surf Sci 389:760–767

    Article  CAS  Google Scholar 

  41. Byrne C, Moran L, Hermosilla D et al (2019) Effect of Cu doping on the anatase-to-rutile phase transition in TiO2 photocatalysts: theory and experiments. Appl Catal B 246:266–276

    Article  CAS  Google Scholar 

  42. Yu Z, Zhang Z, Zhang Y et al (2020) Titania morphology-dependent catalysis of CuOx/TiO2 catalysts in CO oxidation and water gas shift reactions. ChemCatChem 12(14):3679–3686

    Article  CAS  Google Scholar 

  43. Chen G, Zhang D, Zhang A et al (2017) CrOx–MnOx–TiO2 adsorbent with high resistance to SO2 poisoning for Hg0 removal at low temperature. J Ind Eng Chem 55:119–127

    Article  CAS  Google Scholar 

  44. Nakajima F, Hamada I (1996) The state-of-the-art technology of NOx control. Catal Today 29:109–115

    Article  CAS  Google Scholar 

  45. Sun C, Zhu J, Lv Y et al (2011) Dispersion, reduction and catalytic performance of CuO supported on ZrO2-doped TiO2 for NO removal by CO. Appl Catal B 103(1–2):206–220

    Article  CAS  Google Scholar 

  46. Sjoerd Kijlstra W, Brands DS, Smit HI, Poels EK, Bliek A (1997) Mechanism of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3. J Catal 171(1):219–230

    Article  Google Scholar 

  47. Zhong L, Yu Y, Cai W et al (2015) Structure–activity relationship of Cr/Ti-PILC catalysts using a pre-modification method for NO oxidation and their surface species study. Phys Chem Chem Phys 17(22):15036–15045

    Article  CAS  PubMed  Google Scholar 

  48. Peña DA, Uphade BS, Reddy EP et al (2004) Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts. J Phys Chem B 108:9927–9936

    Article  CAS  Google Scholar 

  49. Li X, Meng F, Zhang S et al (2019) The effect of polyethylene glycol modification on CrO/TiO2 catalysts for NO oxidation. Colloids Surf A Physicochem Eng Asp 578:123588

    Article  CAS  Google Scholar 

  50. Li L, Zhang F, Guan N et al (2007) Selective catalytic reduction of NO by propane in excess oxygen over IrCu-ZSM-5 catalyst. Catal Commun 8(3):583–588

    Article  CAS  Google Scholar 

  51. Cai W, Zhao Y, Chen M et al (2018) The formation of 3D spherical Cr-Ce mixed oxides with roughness surface and their enhanced low-temperature NO oxidation. Chem Eng J 333:414–422

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by ChangZhou Science and Technology Support Program (CE20195022) and Advanced Catalysis and Green manufacturing Collaborative Innovation Center, Changzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shule Zhang or Jiangquan Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2386 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Meng, F., Li, N. et al. Insight Into the CuOx Interacts with Oxygen Vacancies on the Surface of Black-TiO2 for NO Oxidation. Catal Lett 152, 2869–2879 (2022). https://doi.org/10.1007/s10562-021-03729-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03729-y

Keywords

Navigation