Skip to main content
Log in

Analysis of the Reduction of 4-Nitrophenol Catalyzed by Para-Mercaptobenzoic Acid Capped Magic Number Gold Clusters

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The magic number clusters Au102(p-MBA)44 and Au144(p-MBA)60 were synthesized and tested for their ability to catalyze the reduction of 4-nitrophenol. Kinetic and thermodynamic analyses demonstrate that both clusters are effective catalysts with activation energies less than 10 kJ/mol and turnover frequencies approaching 103 h–1 per surface gold atom.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Desireddy A, Conn BE, Guo J et al (2013) Ultrastable silver nanoparticles. Nature 501:399–402. https://doi.org/10.1038/nature12523

    Article  CAS  PubMed  Google Scholar 

  2. Pichugina DA, Kuzmenko NE, Shestakov AF (2015) Ligand-protected gold clusters: the structure, synthesis and applications. Russ Chem Rev 84:1114–1144. https://doi.org/10.1070/RCR4493

    Article  CAS  Google Scholar 

  3. Zhu Y, Jin R, Sun Y (2011) Atomically monodisperse gold nanoclusters catalysts with precise core-shell structure. Catalysts 1:3–17. https://doi.org/10.3390/catal1010003

    Article  CAS  Google Scholar 

  4. Zhang Y, Cui X, Shi F, Deng Y (2012) Nano-gold catalysis in fine chemical synthesis. Chem Rev 112:2467–2505. https://doi.org/10.1021/cr200260m

    Article  CAS  PubMed  Google Scholar 

  5. Du Y, Sheng H, Astruc D, Zhu M (2019) Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem Rev. https://doi.org/10.1021/acs.chemrev.8b00726

    Article  PubMed  Google Scholar 

  6. Zhu Y, Qian H, Zhu M, Jin R (2010) Thiolate-protected Aun nanoclusters as catalysts for selective oxidation and hydrogenation processes. Adv Mater 22:1915–1920. https://doi.org/10.1002/adma.200903934

    Article  CAS  PubMed  Google Scholar 

  7. Lopez-Acevedo O, Kacprzak KA, Akola J, Häkkinen H (2010) Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nature Chem 2:329–334. https://doi.org/10.1038/nchem.589

    Article  CAS  Google Scholar 

  8. Jadzinsky PD, Calero G, Ackerson CJ et al (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution. Science 318:430–433. https://doi.org/10.1126/science.1148624

    Article  CAS  PubMed  Google Scholar 

  9. Jensen KMØ, Juhas P, Tofanelli MA et al (2016) Polymorphism in magic-sized Au144(SR)60 clusters. Nat Commun 7:11859. https://doi.org/10.1038/ncomms11859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walter M, Akola J, Lopez-Acevedo O et al (2008) A unified view of ligand-protected gold clusters as superatom complexes. Proc Natl Acad Sci 105:9157–9162. https://doi.org/10.1073/pnas.0801001105

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mustalahti S, Myllyperkiö P, Malola S et al (2015) Molecule-like photodynamics of Au102(p MBA) 44 nanocluster. ACS Nano 9:2328–2335. https://doi.org/10.1021/nn506711a

    Article  CAS  PubMed  Google Scholar 

  12. Wunder S, Lu Y, Albrecht M, Ballauff M (2011) Catalytic activity of faceted gold nanoparticles studied by a model reaction: evidence for substrate-induced surface restructuring. ACS Catal 1:908–916. https://doi.org/10.1021/cs200208a

    Article  CAS  Google Scholar 

  13. Antonels NC, Meijboom R (2013) Preparation of well-defined dendrimer encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4-nitrophenol according to the Langmuir-Hinshelwood approach. Langmuir 29:13433–13442. https://doi.org/10.1021/la402885k

    Article  CAS  PubMed  Google Scholar 

  14. Gu S, Wunder S, Lu Y et al (2014) Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. J Phys Chem C 118:18618–18625. https://doi.org/10.1021/jp5060606

    Article  CAS  Google Scholar 

  15. Gu S, Lu Y, Kaiser J et al (2015) Kinetic analysis of the reduction of 4-nitrophenol catalyzed by Au/Pd nanoalloys immobilized in spherical polyelectrolyte brushes. Phys Chem Chem Phys 17:28137–28143. https://doi.org/10.1039/C5CP00519A

    Article  CAS  PubMed  Google Scholar 

  16. Levi-Kalisman Y, Jadzinsky PD, Kalisman N et al (2011) Synthesis and characterization of Au102(p-MBA) 44 nanoparticles. J Am Chem Soc 133:2976–2982. https://doi.org/10.1021/ja109131w

    Article  CAS  PubMed  Google Scholar 

  17. Ackerson CJ, Jadzinsky PD, Sexton JZ et al (2010) Synthesis and bioconjugation of 2 and 3 nm-diameter gold nanoparticles. Bioconjugate Chem 21:214–218. https://doi.org/10.1021/bc900135d

    Article  CAS  Google Scholar 

  18. Menumerov E, Hughes RA, Neretina S (2016) Catalytic reduction of 4-nitrophenol: a quantitative assessment of the role of dissolved oxygen in determining the induction time. Nano Lett 16:7791–7797. https://doi.org/10.1021/acs.nanolett.6b03991

    Article  CAS  PubMed  Google Scholar 

  19. Choi S, Jeong Y, Yu J (2016) Spontaneous hydrolysis of borohydride required before its catalytic activation by metal nanoparticles. Catal Commun 84:80–84. https://doi.org/10.1016/j.catcom.2016.06.008

    Article  CAS  Google Scholar 

  20. Yamamoto H, Yano H, Kouchi H et al (2012) N, N-Dimethylformamide-stabilized gold nanoclusters as a catalyst for the reduction of 4-nitrophenol. Nanoscale 4:4148. https://doi.org/10.1039/c2nr30222e

    Article  CAS  PubMed  Google Scholar 

  21. Ma T, Yang W, Liu S et al (2017) A Comparison reduction of 4-nitrophenol by gold nanospheres and gold nanostars. Catalysts 7:38. https://doi.org/10.3390/catal7020038

    Article  CAS  Google Scholar 

  22. Hervés P, Pérez-Lorenzo M, Liz-Marzán LM et al (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41:5577. https://doi.org/10.1039/c2cs35029g

    Article  CAS  PubMed  Google Scholar 

  23. Deraedt C, Salmon L, Gatard S et al (2014) Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chem Commun 50:14194–14196. https://doi.org/10.1039/C4CC05946H

    Article  CAS  Google Scholar 

  24. Thawarkar SR, Thombare B, Munde BS, Khupse ND (2018) Kinetic investigation for the catalytic reduction of nitrophenol using ionic liquid stabilized gold nanoparticles. RSC Adv 8:38384–38390. https://doi.org/10.1039/C8RA07404F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mehmood S, Janjua NK, Saira F, Fenniri H (2016) AuCu@Pt nanoalloys for catalytic application in reduction of 4-nitrophenol. J Spectrosc 2016:1–8. https://doi.org/10.1155/2016/6210794

    Article  CAS  Google Scholar 

  26. Zhao S, Das A, Zhang H et al (2016) Mechanistic insights from atomically precise gold nanocluster-catalyzed reduction of 4-nitrophenol. Prog Nat Sci Mater Int 26:483–486. https://doi.org/10.1016/j.pnsc.2016.08.009

    Article  CAS  Google Scholar 

  27. Ciganda R, Li N, Deraedt C et al (2014) Gold nanoparticles as electron reservoir redox catalysts for 4-nitrophenol reduction: a strong stereoelectronic ligand influence. Chem Commun 50:10126–10129. https://doi.org/10.1039/C4CC04454A

    Article  CAS  Google Scholar 

  28. Nigra MM, Ha J-M, Katz A (2013) Identification of site requirements for reduction of 4-nitrophenol using gold nanoparticle catalysts. Catal Sci Technol 3:2976. https://doi.org/10.1039/c3cy00298e

    Article  CAS  Google Scholar 

  29. Zeng J, Zhang Q, Chen J, Xia Y (2010) A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett 10:30–35. https://doi.org/10.1021/nl903062e

    Article  CAS  PubMed  Google Scholar 

  30. Panigrahi S, Basu S, Praharaj S et al (2007) Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. J Phys Chem C 111:4596–4605. https://doi.org/10.1021/jp067554u

    Article  CAS  Google Scholar 

  31. He R, Wang Y-C, Wang X et al (2014) Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties. Nat Commun 5:4327. https://doi.org/10.1038/ncomms5327

    Article  CAS  PubMed  Google Scholar 

  32. Ansar SM, Fellows B, Mispireta P et al (2017) pH triggered recovery and reuse of thiolated poly(acrylic acid) functionalized gold nanoparticles with applications in colloidal catalysis. Langmuir 33:7642–7648. https://doi.org/10.1021/acs.langmuir.7b00870

    Article  CAS  PubMed  Google Scholar 

  33. de Oliveira F, Nascimento L, Calado C et al (2016) Aqueous-phase catalytic chemical reduction of p-nitrophenol employing soluble gold nanoparticles with different shapes. Catalysts 6:215. https://doi.org/10.3390/catal6120215

    Article  CAS  Google Scholar 

  34. Truhlar DG, Kohen A (2001) Convex arrhenius plots and their interpretation. Proc Natl Acad Sci 98:848–851. https://doi.org/10.1073/pnas.98.3.848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Masgrau L, Àngels G-L, Lluch JM (2003) The curvature of the Arrhenius plots predicted by conventional canonical transition-state theory in the absence of tunneling. Theor Chem Account 110:352–357. https://doi.org/10.1007/s00214-003-0484-9

    Article  CAS  Google Scholar 

  36. Tolman RC (1920) Statistical mechanics applied to chemical kinetics. J Am Chem Soc 42:2506–2528. https://doi.org/10.1021/ja01457a008

    Article  CAS  Google Scholar 

  37. Wong OA, Heinecke CL, Simone AR et al (2012) Ligand symmetry-equivalence on thiolate protected gold nanoclusters determined by NMR spectroscopy. Nanoscale 4:4099. https://doi.org/10.1039/c2nr30259d

    Article  CAS  PubMed  Google Scholar 

  38. Yan N, Xia N, Liao L et al (2018) Unraveling the long-pursued Au144 structure by x-ray crystallography. Sci Adv 4:eaat7259. https://doi.org/10.1126/sciadv.aat7259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heinecke CL, Ni TW, Malola S et al (2012) Structural and theoretical basis for ligand exchange on thiolate monolayer protected gold nanoclusters. J Am Chem Soc 134:13316–13322. https://doi.org/10.1021/ja3032339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Umpierre AP, de Jesús E, Dupont J (2011) Turnover numbers and soluble metal nanoparticles. Chem Cat Chem 3:1413–1418. https://doi.org/10.1002/cctc.201100159

    Article  CAS  Google Scholar 

  41. Kozuch S, Martin JML (2012) Turning over definitions in catalytic cycles. ACS Catal 2:2787–2794. https://doi.org/10.1021/cs3005264

    Article  CAS  Google Scholar 

  42. Zheng N, Stucky GD (2006) A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J Am Chem Soc 128:14278–14280. https://doi.org/10.1021/ja0659929

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thankfully acknowledge Loyola University New Orleans for funding undergraduate student researchers on this project through the Carter Fellowship. We also thank Avery F. Hill and Dr. Allyn J. Shoeffler for helpful preliminary contributions and discussions, respectively. Lastly, we thank Dr. Christopher J. Ackerson for providing standards of both Au NCs for characteristic comparisons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine L. Heinecke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinecke, C.L., Milosch, N.W., Dufour, R.E. et al. Analysis of the Reduction of 4-Nitrophenol Catalyzed by Para-Mercaptobenzoic Acid Capped Magic Number Gold Clusters. Catal Lett 152, 1257–1263 (2022). https://doi.org/10.1007/s10562-021-03727-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03727-0

Navigation