Skip to main content
Log in

Preparation of Different BiVO4 Catalysts and Their Photocatalytic Performance in the Coupling Reaction Between Alcohols and Amines

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Photocatalysts BiVO4 were prepared by three different methods and applied to the synthesis of imines under visible light irradiation. Multiple characterization methods, including XRD, SEM, TEM, UV–Vis, FL and BET were applied to analyze the crystal types, morphologies, optical and charge separated properties and specific surface areas of these catalysts. The catalytic performance of these catalysts was measured. The relationship between the morphology, crystal type and photocatalytic performance of the BiVO4 was explored. The results showed that the ms-BiVO4 (prepared by DMF method) with decahedron structure had the best visible light absorption capacity and the largest specific surface area, which had the best conversion rate (~ 64.2%) in the synthesis of imine. The photostability of the catalyst was verified by cyclic experiments. A capture experiment verified that the reaction was mainly completed through the synergistic action of h+, e and ·O2.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dutta B, March S, Achola L, Sahoo S, He J, Amin AS, Wu Y, Poges S, Alpay SP, Suib SL (2018) Mesoporous cobalt/manganese oxide: a highly selective bifunctional catalyst for amine-imine transformations. Green Chem 20:3180–3185. https://doi.org/10.1039/C8GC00862K

    Article  CAS  Google Scholar 

  2. Han XM, Chen X, Zou Y, Zhang S (2020) Electronic state regulation of supported Pt catalysts dictates selectivity of imines/secondary amines from the cascade transformation of nitroarenes and aldehydes. Appl Catal B 268:118451–118458. https://doi.org/10.1016/j.apcatb.2019.118451

    Article  CAS  Google Scholar 

  3. Chen B, Wang LY, Gao S (2015) Recent advances in aerobic oxidation of alcohols and amines to imines. ACS Catal 5:5851–5876. https://doi.org/10.1021/acscatal.5b01479

    Article  CAS  Google Scholar 

  4. Xu H, Shi JL, Hao HM, Li X, Lang XJ (2019) Visible light photocatalytic aerobic oxidative synthesis of imines from alcohols and amines on dye-sensitized TiO2. Catal Today 335:128–135. https://doi.org/10.1016/j.cattod.2018.10.008

    Article  CAS  Google Scholar 

  5. Liu Y, Yuan AL, Xiao YF, Yu HJ, Dong XP (2020) Two-dimensional/two-dimensional z-scheme photocatalyst of graphitic carbon nitride/bismuth vanadate for visible-light-driven photocatalytic synthesis of imines. Ceram Int 46:16157–16165. https://doi.org/10.1016/j.ceramint.2020.03.171

    Article  CAS  Google Scholar 

  6. Yuan AL, Lei H, Wang ZS, Dong XP (2020) Improved photocatalytic performance for selective oxidation of amines to imines on graphitic carbon nitride/bismuth tungstate heterojunctions. J Colloid Interface Sci 560:40–49. https://doi.org/10.1016/j.jcis.2019.10.060

    Article  CAS  PubMed  Google Scholar 

  7. Liu G, Cogan DA, Owens TD, Tang TP, Ellman JA (1999) Synthesis of enantiomerically pure N-tert-Butanesulfinyl imines (tert-Butanesulfinimines) by the direct condensation of tert-Butanesulfinamide with aldehydes and ketones. J Organomet Chem 64:1278–1284. https://doi.org/10.1021/jo982059i

    Article  CAS  Google Scholar 

  8. Huang H, Huang J, Liu YM, He HY, Cao Y, Fan KN (2012) Graphite oxide as an efficient and durable metal-free catalyst for aerobic oxidative coupling of amines to imines. Green Chem 14:930–934. https://doi.org/10.1039/C2GC16681J

    Article  CAS  Google Scholar 

  9. Samanta S, Khilari S, Pradhan D, Srivastava R (2017) An efficient, visible light driven, selective oxidation of aromatic alcohols and amines with O2 using BiVO4/g-C3N4 nanocomposite: a systematic and comprehensive study toward the development of a photocatalytic process. ACS Sustain Chem Eng 5:2562–2577. https://doi.org/10.1021/acssuschemeng.6b02902

    Article  CAS  Google Scholar 

  10. Xiao X, Wei J, Yang Y, Xiong R, Pan C, Shi J (2016) Photoreactivity and mechanism of g-C3N4 and Ag Co-modified Bi2WO6 microsphere under visible light irradiation. ACS Sustain Chem Eng 4:3017–3023. https://doi.org/10.1021/acssuschemeng.5b01701

    Article  CAS  Google Scholar 

  11. Liu W, Zhao G, An M, Chang L (2015) Solvothermal synthesis of nanostructured BiVO4 with highly exposed (010) facets and enhanced sunlight-driven photocatalytic properties. Appl Surf Sci 357:1053–1063. https://doi.org/10.1016/j.apsusc.2015.09.117

    Article  CAS  Google Scholar 

  12. Largeron M, Fleury MB (2017) A bioinspired organocatalytic cascade for the selective oxidation of amines under air. Chem A Eur J 23:6763–6767. https://doi.org/10.1002/chem.201701402

    Article  CAS  Google Scholar 

  13. Adhikary SD, Mandal D (2020) Polyoxometalate catalyzed imine synthesis: investigation of mechanistic pathways. Tetrahedron 76:131245–131253. https://doi.org/10.1016/j.tet.2020.131245

    Article  CAS  Google Scholar 

  14. Jiang DL, Xiao P, Shao LQ, Li D, Chen M (2017) RGO-promoted all-solid-state g-C3N4/BiVO4 Z-scheme heterostructure with enhanced photocatalytic activity toward the degradation of antibiotics. Ind Eng Chem Res 56:8823–8832. https://doi.org/10.1021/acs.iecr.7b01840

    Article  CAS  Google Scholar 

  15. She H, Li LS, Sun YD, Wang L, Huang JW, Zhu GQ, Wang QZ (2018) Facile preparation of mixed-phase CdS and its enhanced photocatalytic selective oxidation of benzyl alcohol under visible light irradiation. Appl Surf Sci 457:1167–1173. https://doi.org/10.1016/j.apsusc.2018.07.045

    Article  CAS  Google Scholar 

  16. Lin Q, Li YH, Qi MY, Li JY, Tang ZR, Anpo M, Yamada YMA, Xu YJ (2020) Photoredox dual reaction for selective alcohol oxidation and hydrogen evolution over nickel surface-modified ZnIn2S4. Appl Catal B 271:118946. https://doi.org/10.1016/j.apcatb.2020.118946

    Article  CAS  Google Scholar 

  17. Liu XL, Li HY, Ma JJ, Yu XJ, Wang Y, Li JY (2019) Preparation of a Bi2WO6 catalyst and its catalytic performance in an alpha alkylation reaction under visible light irradiation. Mol Catal 466:157–166. https://doi.org/10.1016/j.mcat.2019.01.018

    Article  CAS  Google Scholar 

  18. Dong CW, Lu SY, Yao SY, Ge R, Wang ZD, Wang Z, An PF, Liu Y, Yang B, Zhang H (2018) Colloidal synthesis of ultrathin monoclinic BiVO4 nanosheets for Z-scheme overall water splitting under visible light. ACS Catal 8:8649–8658. https://doi.org/10.1021/acscatal.8b01645

    Article  CAS  Google Scholar 

  19. Choe HR, Han SS, Kim Y, Hong C, Cho EJ, Nam KM (2021) Understanding and improving photocatalytic activity of Pd-loaded BiVO4 microspheres: application to visible light-induced suzuki-miyaura coupling reaction. ACS Appl Mater Interfaces 13:1714–1722. https://doi.org/10.1021/acsami.0c15488

    Article  CAS  PubMed  Google Scholar 

  20. Azad R, Bezaatpour A, Amiri M, Eskandari H, Nouhi S, Taffa DH, Wark M, Boukherroub R, Szunerits S (2019) Excellent photocatalytic reduction of nitroarenes to aminoarenes by BiVO4 nanoparticles grafted on reduced graphene oxide (rGO/BiVO4). Appl Organomet Chem 33:e5059. https://doi.org/10.1002/aoc.5059

    Article  CAS  Google Scholar 

  21. Hu JS, Zhang PF, An WJ, Liu L, Liang YH, Cui WQ (2019) In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater. Appl Catal B: Environ 245:130–142. https://doi.org/10.1016/j.apcatb.2018.12.029

    Article  CAS  Google Scholar 

  22. Zhao Y, Li R, Mu L, Li C (2017) The significance of crystal morphology controlling in semiconductor-based photocatalysis: a case study on BiVO4 photocatalyst. Cryst Growth Des 17:2923–2928. https://doi.org/10.1021/acs.cgd.7b00291

    Article  CAS  Google Scholar 

  23. Hegner FS, Forrer D, Galanmascaros JR, Lopez N, Selloni A (2019) Versatile nature of oxygen vacancies in bismuth vanadate bulk and (001) surface. J Phys Chem Lett 10:6672–6678. https://doi.org/10.1021/acs.jpclett.9b02552

    Article  CAS  PubMed  Google Scholar 

  24. Zachaus C, Abdi FF, Peter LM, Krol RVD (2017) Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis. Chem Sci 8:3712–3719. https://doi.org/10.1039/C7SC00363C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ni SN, Zhou TT, Zhang HN, Cao YQ, Yang P (2018) BiOi/BiVO4 two-dimensional hetero-nanostructures for visible light photocatalytic degradation of rhodamine B. ACS Appl Nano Mater 1:5128–5141. https://doi.org/10.1021/acsanm.8b01161

    Article  CAS  Google Scholar 

  26. Chen Y, Zhang X, Mao L, Yang Z (2017) Dependence of kinetics and pathway of acetaminophen photocatalytic degradation on irradiation photon energy and TiO2 crystalline. Chem Eng J 330:1091–1099. https://doi.org/10.1016/j.cej.2017.07.148

    Article  CAS  Google Scholar 

  27. Wu ZC, Xue YJ, Zou ZX, Wang X, Gao F (2017) Single-crystalline titanium dioxide hollow tetragonal nanocones with large exposed (101) facets for excellent photocatalysis. J Colloid Interface Sci 490:420–429. https://doi.org/10.1016/j.jcis.2016.11.077

    Article  CAS  PubMed  Google Scholar 

  28. Martin DJ, Umezawa N, Chen XW, Ye JH, Tang JW (2013) Facet engineered Ag3PO4 for efficient water photooxidation. Energy Environ Sci 6:3380–3386. https://doi.org/10.1039/C3EE42260G

    Article  CAS  Google Scholar 

  29. Wu XH, Ma HQ, Zhong W, Fan JJ, Yu HG (2020) Porous crystalline g-C3N4: bifunctional NaHCO3 template-mediated synthesis and improved photocatalytic H2-evolution rate. Appl Catal B 271:118899. https://doi.org/10.1016/j.apcatb.2020.118899

    Article  CAS  Google Scholar 

  30. Tan GQ, Zhang LL, Ren HJ, Wei SS, Huang J, Xia A (2013) Effects of pH on the hierarchical structures and photocatalytic performance of BiVO4 powders prepared via the microwave hydrothermal method. ACS Appl Mater Interfaces 5:5186–5193. https://doi.org/10.1021/am401019m

    Article  CAS  PubMed  Google Scholar 

  31. Usai S, Obregon S, Becerro AI, Colon G (2013) Monoclinic-tetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity. J Phys Chem C 117:24479–24484. https://doi.org/10.1021/jp409170y

    Article  CAS  Google Scholar 

  32. Dong CW, Lu SY, Yao SY, Ge R, Wang ZD, Wang Z, Liu Y, Zhang H (2018) Colloidal synthesis of ultrathin monoclinic BiVO4 nanosheets for Z-Scheme overall water splitting under visible light. ACS Catal 8:8649–8658. https://doi.org/10.1021/acscatal.8b01645

    Article  CAS  Google Scholar 

  33. Yentur G, Dukkancl M (2020) Synthesis of visible-light heterostructured photocatalyst of Ag/AgCl deposited on (040) facet of monoclinic BiVO4 for efficient carbamazepine photocatalytic removal. Appl Surf Sci 531:147322. https://doi.org/10.1016/j.apsusc.2020.147322

    Article  CAS  Google Scholar 

  34. Liu G, Yu JC, Lu GQ, Cheng HM (2011) Crystal facet engineering of semiconductor photocatalysts: motivations, advancesand unique properties. Chem Commun 47:6763–6783. https://doi.org/10.1039/C1CC10665A

    Article  CAS  Google Scholar 

  35. Pan J, Liu G, Lu GQ, Cheng HM (2011) On the true photoreactivity order of 001},{010}, and {101 facets of anatase TiO2 crystals. Angew Chem Int Ed 50:2133–2137. https://doi.org/10.1002/anie.201006057

    Article  CAS  Google Scholar 

  36. Tan HL, Wen XM, Amal R, Ng YH (2016) BiVO4 010 and 110 relative exposure extent: governing factor of surface charge population and photocatalytic activity. J Phys Chem Lett 7:1400–1405. https://doi.org/10.1021/acs.jpclett.6b00428

    Article  CAS  PubMed  Google Scholar 

  37. Shan LW, Lu CH, Dong LM, Suriyaprakash J (2019) Efficient facet regulation of BiVO4 and its photocatalytic motivation. J Alloys Compd 804:385–391. https://doi.org/10.1016/j.jallcom.2019.07.051

    Article  CAS  Google Scholar 

  38. Ohno T, Sarukawa K, Matsumura M (2002) Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J Chem 26:1167–1170. https://doi.org/10.1039/B202140D

    Article  CAS  Google Scholar 

  39. Zhang B, Zhang HP, Wang ZY, Zhang XY, Qin XY, Dai Y, Liu YY, Wang P, Li YJ, Huang BB (2017) Doping strategy to promote the charge separation in BiVO4 photoanodes. Appl Catal B 211:258–265. https://doi.org/10.1016/j.apcatb.2017.03.078

    Article  CAS  Google Scholar 

  40. Liu C, Zhang X, Li W, Yu Y, Liu MH, Wang L, Lin X (2020) Leaf-like BiVO4 nanostructure decorated by nitrogen-doped carbon quantum dots: binary heterostructure photocatalyst for enhanced photocatalytic performance. Mater Res Bull 122:110640. https://doi.org/10.1016/j.materresbull.2019.110640

    Article  CAS  Google Scholar 

  41. Wang M, Guo PY, Zhang Y, Liu TY, Li SL, Xie YH, Zhu T (2018) Eu doped g-C3N4 nanosheet coated on flower-like BiVO4 powders with enhanced visible light photocatalytic for tetracycline degradation. Appl Surf Sci 453:11–22. https://doi.org/10.1016/j.apsusc.2018.05.084

    Article  CAS  Google Scholar 

  42. Zhang D, Hao JY, Wan P, Zhang D, Sun Q, Liu ZJ, Wang Y (2020) Synergy of charge pre-separation and direct Z-scheme bridge in BiVO4{040}/Ag6Si2O7 photocatalyst boosting organic pollutant degradation. Appl Surf Sci 513:145832. https://doi.org/10.1016/j.apsusc.2020.145832

    Article  CAS  Google Scholar 

  43. Chen L, Meng D, Wu XL, Wang JX, Wang YQ, Liang YJ (2016) Shape-controlled synthesis of novel self-assembled BiVO4 hierarchical structures with enhanced visible light photocatalytic performances. Mater Lett 176:143–146. https://doi.org/10.1016/j.matlet.2016.04.112

    Article  CAS  Google Scholar 

  44. Yu XJ, Li HY, Hao XL, Zhang ZY, Wang Y, Li JY, Wang K (2020) Selective oxidation of benzyl alcohol by Ag/Pd/m-BiVO4 microspheres under visible light irradiation. Catalysts 10:266–282. https://doi.org/10.3390/catal10020266

    Article  CAS  Google Scholar 

  45. Wang JP, Song YN, Hu J, Li Y, Yang P, Huang BB (2019) Photocatalytic hydrogen evolution on P-type tetragonal zircon BiVO4. Appl Catal B 251:94–101. https://doi.org/10.1016/j.apcatb.2019.03.049

    Article  CAS  Google Scholar 

  46. Li Y, Xiao XY, Ye ZH (2018) Facile fabrication of tetragonal scheelite (t-s) BiVO4/g-C3N4 composites with enhanced photocatalytic performance. Ceram Int 44:7067–7076. https://doi.org/10.1016/j.ceramint.2018.01.143

    Article  CAS  Google Scholar 

  47. Jing QF, Feng XY, Zhao XJ, Duan ZY, Pan JL, Chen LM, Liu YN (2018) Bi/BiVO4 chain-like hollow microstructures: synthesis, characterization and application as visible-light-active photocatalysts. ACS Appl Nano Mater 1:2653–2661. https://doi.org/10.1021/acsanm.8b00330

    Article  CAS  Google Scholar 

  48. Huang HW, Liu K, Chen K, Zhang YL, Zhang YH, Wang SC (2014) Ce and F comodifification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. J Phys Chem C 118:14379–14387. https://doi.org/10.1021/jp503025b

    Article  CAS  Google Scholar 

  49. Li ML, Zhang LX, Fan XQ, Zhou YJ, Wu MY, Shi JL (2015) Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light. J Mater Chem A 3:5189–5196. https://doi.org/10.1039/C4TA06295G

    Article  CAS  Google Scholar 

  50. Raza F, Park JH, Lee HR, Kim HI, Jeon SJ, Kim JH (2016) Visible-light-driven oxidative coupling reactions of amines by photoactive WS2 nanosheets. ACS Catal 6:2754–2759. https://doi.org/10.1021/acscatal.5b02798

    Article  CAS  Google Scholar 

  51. He YM, Zhang LH, Fan MH, Wang XX, Walbridge ML, Nong QY, Wu Y, Zhao LH (2015) Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Sol Energy Mater Sol Cells 137:175–184. https://doi.org/10.1016/j.solmat.2015.01.037

    Article  CAS  Google Scholar 

  52. Su F, Mathew SC, Mohlmann L, Antonietti M, Wang X, Blechert S (2011) Aerobicoxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew Chem Int Ed 50:657–660. https://doi.org/10.1002/anie.201004365

    Article  CAS  Google Scholar 

  53. Zhang XG, Ke XB, Zhu HY (2012) Zeolite-supported gold nanoparticles for selective photooxidation of aromatic alcohols under visible-light irradiation. Chem Eur J 18:8048–8056. https://doi.org/10.1002/chem.201200368

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Education Department Foundation of Hebei Province (JYT2020014), the National Natural Science Foundation of China (NSFC21067007), and the Science and Technology Bureau of Zhangjiakou City Foundation of Hebei Province (1521001A).

Author information

Authors and Affiliations

Authors

Contributions

XY: Investigation, methodology, formal analysis, writing—original draft, supervision, conceptualization, funding acquisition. XY, ZW: Writing—review & editing, tested the activity of photocatalysts. XY, EL, XL, MC, CG: Synthesis of photocatalysts and structure determinations.

Corresponding authors

Correspondence to Xiujuan Yu or Zhibao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Wang, Z., Li, E. et al. Preparation of Different BiVO4 Catalysts and Their Photocatalytic Performance in the Coupling Reaction Between Alcohols and Amines. Catal Lett 152, 1244–1255 (2022). https://doi.org/10.1007/s10562-021-03713-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03713-6

Keywords

Navigation