Skip to main content
Log in

Metal-Free Synthesis of Sulfones and Sulfoxides through Aldehyde-Promoted Aerobic Oxidation of Sulfides

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Metal-free aerobic oxidation of aryl sulfides to sulfoxides and sulfones has been developed in the presence of aliphatic aldehydes with excellent selectivity and yields. The reaction proceeded under mild conditions with the catalysis of N-hydroxyphthalimide (NHPI). Control experiments indicated that the reaction underwent a free radical pathway with the acylperoxyl radicals generated from aldehydes in situ as the key intermediates. The aromatic aldehydes were less efficient in the sulfide oxidation, which might be explained by the fact that the aromatic ring dispersed the electrons of free radicals and thus weakened the attacking ability of peroxy free radicals.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carreno MC (1995) Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chem Rev 95:1717–1760. https://doi.org/10.1021/cr00038a002

    Article  CAS  Google Scholar 

  2. Fernández I, Khiar N (2003) Recent developments in the synthesis and utilization of chiral sulfoxides. Chem Rev 103:3651–3705. https://doi.org/10.1021/cr990372u

    Article  CAS  PubMed  Google Scholar 

  3. Otocka S, Kwiatkowska M, Madalińska L, Kiełbasiński P (2017) Chiral organosulfur ligands/catalysts with a stereogenic sulfur atom: applications in asymmetric synthesis. Chem Rev 117:4147–4181. https://doi.org/10.1021/acs.chemrev.6b00517

    Article  CAS  PubMed  Google Scholar 

  4. Yu H, Li Z, Bolm C (2018) Transition-metal-free arylations of in-situ generated sulfenates with diaryliodonium salts. Org Lett 20:7104–7106. https://doi.org/10.1021/acs.orglett.8b03046

    Article  CAS  PubMed  Google Scholar 

  5. Jia T, Bellomo A, Montel S, Zhang M, El Baina K, Zheng B, Walsh PJ (2014) Diaryl sulfoxides from aryl benzyl sulfoxides: a single palladium-catalyzed triple relay process. Angew Chem Int Ed 53:260–264. https://doi.org/10.1002/anie.201307172

    Article  CAS  Google Scholar 

  6. Izquierdo F, Chartoire A, Nolan SP (2013) Direct S-arylation of unactivated arylsulfoxides using [Pd(IPr*)(cin)Cl]. ACS Catal 3:2190–2193. https://doi.org/10.1021/cs400533e

    Article  CAS  Google Scholar 

  7. Liu M, Shi S, Zhao L, Wang M, Zhu G, Zheng X, Gao J, Xu J (2017) Effective utilization of in situ generated hydroperoxide by a Co–SiO2@Ti–Si core-shell catalyst in the oxidation reactions. ACS Catal 8:683–691. https://doi.org/10.1021/acscatal.7b03259

    Article  CAS  Google Scholar 

  8. Li B, Liu A-H, He L-N, Yang Z-Z, Gao J, Chen K-H (2012) Iron-catalyzed selective oxidation of sulfides to sulfoxides with the polyethylene glycol/O2 system. Green Chem 14:130–135. https://doi.org/10.1039/c1gc15821j

    Article  CAS  Google Scholar 

  9. Rezaeifard A, Jafarpour M, Naeimi A, Haddad R (2012) Aqueous heterogeneous oxygenation of hydrocarbons and sulfides catalyzed by recoverable magnetite nanoparticles coated with copper(II) phthalocyanine. Green Chem 14:3386–3394. https://doi.org/10.1039/c2gc35837a

    Article  CAS  Google Scholar 

  10. Neveselý T, Svobodová E, Chudoba J, Sikorski M, Cibulka R (2016) Efficient metal-free aerobic photooxidation of sulfides to sulfoxides mediated by a vitamin B2 derivative and visible light. Adv Synth Catal 358:1654–1663. https://doi.org/10.1002/adsc.201501123

    Article  CAS  Google Scholar 

  11. Iwahama T, Sakaguchi S, Ishii Y (1998) Selective oxidation of sulfides to sulfoxides with molecular oxygen catalyzed by N-hydroxyphthalimide (NHPI) in the presence of alcohols. Tetrahedron Lett 39:9059–9062. https://doi.org/10.1016/S0040-4039(98)02054-1

    Article  CAS  Google Scholar 

  12. Liu K-J, Deng J-H, Yang J, Gong S-F, Lin Y-W, He J-Y, Cao Z, He W-M (2020) Selective oxidation of (hetero) sulfides with molecular oxygen under clean conditions. Green Chem 22:433–438. https://doi.org/10.1039/C9GC03713F

    Article  CAS  Google Scholar 

  13. Cheng Z, Sun P, Tang A, Jin W, Liu C (2019) Switchable synthesis of aryl sulfones and sulfoxides through solvent-promoted oxidation of sulfifides with O2/air. Org Lett 21:8925–8929. https://doi.org/10.1021/acs.orglett.9b03192

    Article  CAS  PubMed  Google Scholar 

  14. Shapiro N, Kramer M, Goldberg I, Vigalok A (2010) Straightforward radical organic chemistry in neat conditions and “on water.” Green Chem 12:582–584. https://doi.org/10.1039/B922475K

    Article  CAS  Google Scholar 

  15. Vanoye L, Abdelaal M, Grundhauser K, Guicheret B, Fongarland P, Bellefon CD, Favre-Reguillon A (2019) Reinvestigation of the organocatalyzed aerobic oxidation of aldehydes to acids. Org Lett 21:10134–10138. https://doi.org/10.1021/acs.orglett.9b04193

    Article  CAS  PubMed  Google Scholar 

  16. Murahashi S-I, Oda Y, Naota T (1992) Iron-and ruthenium-catalyzed oxidations of alkanes with molecular oxygen in the presence of aldehydes and acids. J Am Chem Soc 114:7914–7916. https://doi.org/10.1021/ja00046a048

    Article  Google Scholar 

  17. Murahashi S-I, Oda Y, Naota T, Komiya N (1993) Aerobic oxidations of alkanes and alkenes in the presence of aldehydes catalysed by copper salts. Chem Commun 2:139–140. https://doi.org/10.1039/c39930000139

    Article  Google Scholar 

  18. Li X, Wang F, Lu X, Song G, Zhang H (1997) A novel method for epoxidation of cyclohexene catalyzed by Fe2O3 with molecular oxygen and aldehydes. Synth Commun 27:2075–2079. https://doi.org/10.1080/00397919708006813

    Article  CAS  Google Scholar 

  19. Li X, Wang F, Zhang H, Wang C, Song G (1996) Baeyer-villiger oxidation of cyclohexanone with molecular oxygen in the presence of benzaldehyde. Synth Commun 26:1613–1616. https://doi.org/10.1080/00397919608003530

    Article  CAS  Google Scholar 

  20. Wang L, Wang Y, Du R, Dao R, Yuan H, Liang C, Yao J, Li H (2018) N-hydroxyphthalimide (NHPI) promoted aerobic baeyer-villiger oxidation in the presence of aldehydes. ChemCatChem 10:4947–4952. https://doi.org/10.1002/cctc.201801165

    Article  CAS  Google Scholar 

  21. Wang L, Zhang Y, Du R, Yuan H, Wang Y, Yao J, Li H (2019) Selective one-step aerobic oxidation of cyclohexane to ε-caprolactone mediated by N-hydroxyphthalimide (NHPI). ChemCatChem 11:2260–2264. https://doi.org/10.1002/cctc.201900282

    Article  CAS  Google Scholar 

  22. Minisci F, Gambarotti C, Pierini M, Porta O, Punta C, Recupero F, Lucarini M, Mugnaini V (2006) Molecule-induced homolysis of N-hydroxyphthalimide (NHPI) by peracids and dioxirane: a new, simple, selective aerobic radical epoxidation of alkenes. Tetrahedron Lett 47:1421–1424. https://doi.org/10.1016/j.tetlet.2005.12.089

    Article  CAS  Google Scholar 

  23. Rao TV, Sain B, Kumar K, Murthy PS, Rao TSRP, Joshi GC (1998) Oxidation of sulphides by molecular oxygen-aldehyde system in the absence of metal catalyst. Synth Commun 28:319–326. https://doi.org/10.1080/00397919808005725

    Article  CAS  Google Scholar 

  24. Rao TV, Sain B, Kafola S, Nautiyal BR, Sharma YK, Nanoti SM, Garg MO (2007) Oxidative desulfurization of HDS diesel using the aldehyde-molecular oxygen oxidation system. Energy Fuels 21:3420–3424. https://doi.org/10.1021/ef700245g

    Article  CAS  Google Scholar 

  25. Murata S, Murata K, Kidena K, Nomura M (2004) A novel oxidative desulfurization system for diesel fuels with molecular oxygen in the presence of cobalt catalysts and aldehydes. Energy Fuels 18:116–121. https://doi.org/10.1021/ef034001z

    Article  CAS  Google Scholar 

  26. Maity N, Wattanakit C, Muratsugu S, Ishiguro N, Yang Y, Ohkoshi S-I, Tada M (2012) Sulfoxidation on a SiO2-supported Ru complex using O2/aldehyde system. Dalton Trans 41:4558–4565. https://doi.org/10.1039/c2dt12133f

    Article  CAS  PubMed  Google Scholar 

  27. Zhang P, Wang Y, Li H, Antonietti M (2012) Metal-free oxidation of sulfides by carbon nitride with visible light illumination at room temperature. Green Chem 14:1904–1908. https://doi.org/10.1039/C2GC35148J

    Article  CAS  Google Scholar 

  28. Wang J-Q, He L-N, Miao C-X, Gao J (2009) The free-radical chemistry of polyethylene glycol: organic reactions in compressed carbon dioxide. ChemSusChem 2:755–760. https://doi.org/10.1002/cssc.200900060

    Article  CAS  PubMed  Google Scholar 

  29. Wertz JE, Bolton JR (1972) Elementary theory and practical applications. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 22073081), and the Fundamental Research Funds for the Central Universities. L. Wang gratefully acknowledge the financial support for this research by the Zhejiang Province Postdoctoral Science Foundation (Grant No. ZJ2020159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoran Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 784 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, Y., Yao, J. et al. Metal-Free Synthesis of Sulfones and Sulfoxides through Aldehyde-Promoted Aerobic Oxidation of Sulfides. Catal Lett 152, 1131–1139 (2022). https://doi.org/10.1007/s10562-021-03706-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03706-5

Keywords

Navigation