Skip to main content
Log in

Influence of Ce/Nb Molar Ratios on Oxygen-Rich CexNb1-xO4+δ Materials for Catalytic Combustion of VOCs in the Process of Polyether Polyol Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic combustion is an efficient and economical technique to deal with the air pollution of diluted volatile organic compounds (VOCs). In this work, oxygen-rich CeO2-Nb2O5 mixed oxides (CexNb1-xO4+δ) with varied Ce/Nb molar ratios in the bulk synthesized by modified sol–gel method were investigated for complete catalytic combustion of VOCs as exemplified by monochlorobenzene and toluene. To reveal the structure–function relationship of these materials, comprehensive catalytic performance evaluation and characterizations were performed, which showed that the 4Ce1Nb catalyst (CeO2-Nb2O5 with Ce/Nb molar ratio of 4:1) displayed superb apparent catalytic activity. Complete oxidation could be accomplished below 300 °C, which was significantly lower than that of single-component CeO2 or Nb2O5, as well as some other types of V and Cr based mixed oxide catalysts. Moreover, the apparent catalytic activity of 4Ce1Nb could be maintained for at least 100 h at 280 °C with high selectivity to the formation of HCl and CO2. The improved catalytic performance of 4Ce1Nb could be ascribed to the formation of oxygen-rich CexNb1-xO4+δ mixed oxides with high dispersion of Ce and Nb species into each other, the strong interaction of Ce–O-Nb, an abundance of active oxygen species, high specific surface area and mesoporous structure.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Regina MM, Rocío LV, Omar AA (2018) Volatile organic compounds in air: sources, distribution, exposure and associated illnesses in children. Ann Glob Health 84:225–238

    Google Scholar 

  2. Zimmermann J, Halloran LJS, Hunkeler D (2020) Tracking chlorinated contaminants in the subsurface using compound-specific chlorine isotope analysis: A review of principles, current challenges and applications. Chemosphere. 244:125476

    CAS  PubMed  Google Scholar 

  3. Wang QY, Yeung KL, Bañares MA (2020) Ceria and its related materials for VOC catalytic combustion: a review. Catal Today 356:141–154

    CAS  Google Scholar 

  4. Du CC, Lu SY, Wang QL, Buekens AG, Ni MJ, Debecker DP (2018) A review on catalytic oxidation of chloroaromatics from flue gas. Chem Eng J 334:519–544

    CAS  Google Scholar 

  5. Krishnamurthy A, Adebayo B, Gelles T, Rownaghi A, Rezaei F (2020) Abatement of gaseous volatile organic compounds: a process perspective. Catal Today 350:100–119

    CAS  Google Scholar 

  6. Dai CH, Zhou YY, Peng H, Huang SJ, Qin PF, Zhang JH, Yang Y, Luo L, Zhang XS (2018) Current progress in remediation of chlorinated volatile organic compounds: a review. J Ind Eng Chem 62:106–119

    CAS  Google Scholar 

  7. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao ZP (2019) Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev 119:4471–4568

    CAS  PubMed  Google Scholar 

  8. Guo YL, Wen MC, Li GY, An TC (2021) Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Appl Catal B-Environ. 281:119447

    CAS  Google Scholar 

  9. Wang J, Zhao HN, Liu XL, Xu WQ, Guo YY, Song JF, Zhu TY (2019) Study on the catalytic properties of Ru/TiO2 catalysts for the catalytic oxidation of (chloro)-aromatics. Catal Lett 149:2004–2014

    CAS  Google Scholar 

  10. Cao S, Fei XQ, Wen YX, Sun ZX, Wang HQ, Wu ZB (2018) Bimodal mesoporous TiO2 supported Pt, Pd and Ru catalysts and their catalytic performance and deactivation mechanism for catalytic combustion of dichloromethane (CH2Cl2). Appl Catal A-Gen 550:20–27

    CAS  Google Scholar 

  11. Yang P, Li JR, Cheng Z, Zuo SF (2017) Promoting effects of Ce and Pt addition on the destructive performances of V2O5/γ-Al2O3 for catalytic combustion of benzene. Appl Catal A-Gen 542:38–46

    CAS  Google Scholar 

  12. Huang Q, Xu GD, Zhang KQ, Zhu J, Si H, Yang B, Tao T, Zhao YX, Chen MD, Yang H (2021) Improved activity and stability of chlorobenzene oxidation over transition metal-substituted spinel-type catalysts supported on cordierite. Catal Lett. https://doi.org/10.1007/s10562-020-03494-4

    Article  Google Scholar 

  13. Weng XL, Long Y, Wang WL, Shao M, Wu ZB (2019) Structural effect and reaction mechanism of MnO2 catalysts in the catalytic oxidation of chlorinated aromatics. Chinese J Catal 40:638–646

    CAS  Google Scholar 

  14. Wen JX, Guo HW, He X, Tong X, Gao P, Dong QX, Ren GB, Ma XD (2021) Morphology-engineering enhanced catalytic performance improvement of Fe-Ca-Ox/TiO2 for 1,2-dichlorobenzene oxidation. Appl Catal A-Gen. 613:118030

    CAS  Google Scholar 

  15. Yang P, Shi ZN, Yang SS, Zhou RX (2015) High catalytic performances of CeO2-CrOx catalysts for chlorinated VOCs elimination. Chem Eng Sci 126:361–369

    CAS  Google Scholar 

  16. Yang P, Zuo SF, Shi ZN, Tao F, Zhou RX (2016) Elimination of 1, 2-dichloroethane over (Ce, Cr)xO2/MOy catalysts (M = Ti, V, Nb, Mo, W and La). Appl Catal B-Environ 191:53–61

    CAS  Google Scholar 

  17. Yang P, Fan SK, Chen ZY, Bao GF, Zuo SF, Qi CZ (2018) Synthesis of Nb2O5 based solid superacid materials for catalytic combustion of chlorinated VOCs. Appl Catal B-Environ 239:114–124

    CAS  Google Scholar 

  18. Zhao YT, He DD, Chen DK, Lu J, Yu J, Liu JP, Cao XH, Han CY, Luo YM (2020) Investigating the support effect for catalytic elimination of Methyl Mercaptan: role of hydroxyl groups over Cr-based catalysts. Catal Lett 150:2763–2773

    CAS  Google Scholar 

  19. Yang P, Zuo SF, Zhou RX (2017) Synergistic catalytic effect of (Ce, Cr)xO2 and HZSM-5 for elimination of chlorinated organic pollutants. Chem Eng J 323:160–170

    CAS  Google Scholar 

  20. Guisnet M, Costa L, Ribeiro FR (2009) Prevention of zeolite deactivation by coking. Mol Catal 305:69–83

    CAS  Google Scholar 

  21. Yang P, Xue XM, Meng ZH, Zhou RX (2013) Enhanced catalytic activity and stability of Ce doping on Cr supported HZSM-5 catalysts for deep oxidation of chlorinated volatile organic compounds. Chem Eng J 234:203–210

    CAS  Google Scholar 

  22. Yang P, Li JR, Zuo SF (2017) Promoting oxidative activity and stability of CeO2 addition on the MnOx modified kaolin-based catalysts for catalytic combustion of benzene. Chem Eng Sci 162:218–226

    CAS  Google Scholar 

  23. Feng BB, Wei YX, Qiu YN, Zuo SF, Ye N (2018) Ce-modified AlZr pillared clays supported-transition metals for catalytic combustion of chlorobenzene. J Rare Earth 36:1169–1174

    CAS  Google Scholar 

  24. Cheng Q, Zhang GK (2020) Enhanced photocatalytic performance of tungsten-based photocatalysts for degradation of volatile organic compounds: a review. Tungsten 2:240–250

    Google Scholar 

  25. Yin S, Asakura Y (2019) Recent research progress on mixed valence state tungsten based materials. Tungsten 1:5–18

    Google Scholar 

  26. Zhou B, Zhang XX, Wang Y, Xie J, Xi K, Zhou Y, Lu HF (2019) Effect of Ni–V loading on the performance of hollow anatase TiO2 in the catalytic combustion of dichloromethane. J Environ Sci 84:59–68

    Google Scholar 

  27. Wei QL, DeBlock RH, Butts DM, Choi C, Dunn B (2020) Pseudocapacitive vanadium-based materials toward high-rate sodium-ion storage. Energy Environ Mater 3:221–234

    CAS  Google Scholar 

  28. Li RJ, Liang GS, Zhu XZ, Fu QF, Chen YJ, Luo LJ, Lin CF (2021) Mo3Nb14O44: a new Li+ container for high-performance electrochemical energy storage. Energy Environ Mater 4:65–71

    CAS  Google Scholar 

  29. Hou ZQ, Pei WB, Zhang X, Zhang KF, Liu YX, Deng JG, Jing L, Dai HX (2020) Rare earth oxides and their supported noble metals in application of environmental catalysis. J Rare Earth 38:819–839

    CAS  Google Scholar 

  30. Figueredo MJM, Andana T, Bensaid S, Dosa M, Fino D, Russo N, Piumetti M (2020) Cerium–copper–manganese oxides synthesized via solution combustion synthesis (SCS) for total oxidation of VOCs. Catal Lett 150:1821–1840

    Google Scholar 

  31. Sun PF, Wang WL, Dai XX, Weng XL, Wu ZB (2016) Mechanism study on catalytic oxidation of chlorobenzene over MnxCe1-xO2/HZSM-5 catalysts under dry and humid conditions. Appl Catal B-Environ 198:389–397

    CAS  Google Scholar 

  32. Weng XL, Sun PF, Long Y, Meng QJ, Wu ZB (2017) Catalytic oxidation of chlorobenzene over MnxCe1-xO2/HZSM-5 catalysts: a study with practical implications. Environ Sci Technol 51:8057–8066

    CAS  PubMed  Google Scholar 

  33. Wang Y, Deng W, Wang YF, Guo LM, Ishihara T (2018) A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce-Mn oxides. Mol Catal 459:61–70

    CAS  Google Scholar 

  34. Peyrovi P, Gillot S, Dacquin JP, Granger P, Dujardin C (2021) The activity of CeVO4-based catalysts for ammonia-SCR: impact of surface cerium enrichment. Catal Lett 151:1003–1012

    CAS  Google Scholar 

  35. Chen KF, Yin S, Xue DF (2019) Active La–Nb–O compounds for fast lithium-ion energy storage. Tungsten 1:287–296

    Google Scholar 

  36. Skinner SJ, Kang Y (2003) X-ray diffraction studies and phase transformations of CeNbO4+δ using in situ techniques. Solid State Sci 5:1475–1479

    CAS  Google Scholar 

  37. Tsipis EV, Munnings CN, Kharton VV, Skinner SJ, Frade JR (2006) Transport properties and structural stability of tetragonal CeNbO4+δ. Solid State Ionics 177:1015–1020

    CAS  Google Scholar 

  38. Packer RJ, Tsipis EV, Munnings CN, Kharton VV, Skinner SJ, Frade JR (2006) Diffusion and conductivity properties of cerium niobate. Solid State Ionics 177:2059–2064

    CAS  Google Scholar 

  39. Skinner SJ, Packer RJ, Bayliss RD, Illy B, Prestipino C, Ryan MP (2011) Redox chemistry of the novel fast oxide ion conductor CeNbO4+d determined through an in-situ spectroscopic technique. Solid State Ionics 192:659–663

    CAS  Google Scholar 

  40. Vullum F, Grande T (2008) Oxygen stoichiometry and transport properties of cerium niobate. Solid State Ionics 179:1061–1065

    CAS  Google Scholar 

  41. Qu RY, Gao X, Cen KF, Li JH (2013) Relationship between structure and performance of a novel cerium-niobium binary oxide catalyst for selective catalytic reduction of NO with NH3. Appl Catal B-Environ 142–143:290–297

    Google Scholar 

  42. Stošić D, Bennici S, Rakić V, Auroux A (2012) CeO2–Nb2O5 mixed oxide catalysts: Preparation, characterization and catalytic activity in fructose dehydration reaction. Catal Today 192:160–168

    Google Scholar 

  43. Zhao HJ, Han WL, Dong F, Tang ZC (2019) Enhanced catalytic performance of Nb doping Ce supported on ordered mesoporous TiO2-SiO2 catalysts for catalytic elimination of 1,2-dichlorobenzene. Mol. Catal. 479:110638

    CAS  Google Scholar 

  44. Yaremchenko AA, Kharton VV, Veniaminov SA, Belyaev VD, Sobyanin VA, Marques FMB (2007) Methane oxidation by lattice oxygen of CeNbO4+δ. Catal Commun 8:335–339

    CAS  Google Scholar 

  45. Tao HY, Li J, Ma QY, Chen ZY, Zhang XW, Quan YR, Yang P, Qi CZ (2020) Synthesis of W-Nb-O solid acid for catalytic combustion of low-concentration monochlorobenzene. Chem. Eng. J. 382:123045

    CAS  Google Scholar 

  46. Wan J, Yang P, Guo XL, Zhou RX (2019) Elimination of 1,2-dichloroethane over (Ce, Cr)xO2/Nb2O5 catalysts: synergistic performance between oxidizing ability and acidity. Chinese J Catal 40:1100–1108

    CAS  Google Scholar 

  47. Bayliss RD, Pramana SS, An T, Wei FX, Kloc CL, White AJP, Skinner SJ, White TJ, Baikie T (2013) Fergusonite-type CeNbO4+δ: single crystal growth, symmetry revision and conductivity. J Solid State Chem 204:291–297

    CAS  Google Scholar 

  48. Zhang GG, Wan WB, Long PQ, Li Q, Deng CZ, Yi ZG (2014) Synthesis and characterization of mixed conductor CeNbO4. J Alloy Compd 616:328–332

    CAS  Google Scholar 

  49. Stošić D, Bennici S, Pavlović V, Rakić V, Auroux A (2014) Tuning the acidity of niobia: characterization and catalytic activity of Nb2O5-MeO2 (Me = Ti, Zr, Ce) mesoporous mixed oxides. Mater Chem Phys 146:337–345

    Google Scholar 

  50. Ran MX, Cui W, Li KL, Chen LC, Zhang YX, Dong F, Sun YJ (2021) Light-induced dynamic stability of oxygen vacancies in BiSbO4 for efficient photocatalytic formaldehyde degradation. Energy Environ Mater. https://doi.org/10.1002/eem2.12176

    Article  Google Scholar 

  51. Zafar Z, Yi SS, Li JP, Li CQ, Zhu YF, Zada A, Yao WJ, Liu ZY, Yue XZ (2021) Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies. Energy Environ Mater. https://doi.org/10.1002/eem2.12171

    Article  Google Scholar 

  52. Xia HQ, Chen YX, Wu JY, Shao SJ, Chen G, Zhang H, Dai QG, Wang XY (2021) Oxidative decomposition of chlorobenzene over iron titanate catalysts: The critical roles of oxygen vacancies and adsorption geometries. Appl Catal A-Gen. https://doi.org/10.1016/j.apcata.2021.118118

    Article  Google Scholar 

  53. Yang P, Li J, Bao LF, Zhou X, Zhang XW, Fan SK, Chen ZY, Zuo SF, Qi CZ (2019) Adsorption/catalytic combustion of toxic 1,2-dichloroethane on multifunctional Nb2O5-TiO2 composite metal oxides. Chem Eng J 361:1400–1410

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports for this research paper provided by Zhejiang Provincial Natural Science Foundation (No. LQ19B030004 and No. LGC20B010001), National Natural Science Foundation of China (NSFC, No. 21906106 and No. 12075154), Postdoctoral Scientific Research Program of Zhejiang Hengfeng New Materials Co., LTD and Zhejiang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Jin, Y., Zhang, X. et al. Influence of Ce/Nb Molar Ratios on Oxygen-Rich CexNb1-xO4+δ Materials for Catalytic Combustion of VOCs in the Process of Polyether Polyol Synthesis. Catal Lett 152, 523–537 (2022). https://doi.org/10.1007/s10562-021-03652-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03652-2

Keywords

Navigation