Skip to main content

Advertisement

Log in

Construction of Carbon Nitride Based Intramolecular D–A System for Effective Photocatalytic Reduction of CO2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Photocatalytic technology provides a new strategy for mitigating energy crisis. The development of photocatalytic materials with high efficiency and stable visible light response has always been the direction of researchers in the field of photocatalysis. Graphite carbon nitride (g-CN) has attracted ever increasing attention in the field of photocatalysis due to its special characteristics (such as visible light response, high stability, and low cost). However, the low separation efficiency of photogenerated electrons and holes limits its catalytic activity. In this paper, a novel g-CN-based intramolecular donor–acceptor (D–A) system was prepared to promote the separation efficiency of light-induced charge carriers. The catalyst is prepared from g-CN and 1,2-dibromobenzene (Bz) through a simple calcination method. Characterization results confirmed that Bz was successfully introduced into the g-CN (g-CN-Bz (x)) framework. The formation of the D–A structure leads to the spatial separation of electrons and holes pairs, which significantly accelerates the separation efficiency of charge carriers. Moreover, the D–A structure plays an important role in adjusting the width of band gap, which can increase the light absorption capacity of the catalyst. The D–A system also leads to the formation of a built-in electric field, which significantly accelerates the migration speed of electrons. Among the prepared catalysts, g-CN-Bz (0.01) has the best photocatalytic CO2 reduction performance, and the evolution rate of CO is 5.2 times higher than that of CN (3.64 μmol g−1). In addition, the reaction is carried out in water without any sacrificial agent, which makes it green and environmentally friendly.

Graphic Abstract

The charge carrier excitation-recombination process between donor and acceptor, and photocatalytic reduction of CO2 to CO over the CN based DA composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li A, Wang T, Li C, Huang Z, Luo Z, Gong J (2019) Angew Chem Int Ed Engl 58:3804–3808

    Article  CAS  PubMed  Google Scholar 

  2. Di J, Zhao X, Lian C, Ji M, Xia J, Xiong J, Zhou W, Cao X, She Y, Liu H, Loh KP, Pennycook SJ, Li H, Liu Z (2019) Nano Energy 61:54–59

    Article  CAS  Google Scholar 

  3. Song X, Li X, Zhang X, Wu Y, Ma C, Huo P, Yan Y (2020) Appl Catal B 268:118736

    Article  CAS  Google Scholar 

  4. Liu A, Zhang J, Lv X (2018) Chin J Catal 39:1320–1328

    Article  CAS  Google Scholar 

  5. Hayat A, Khan J, Rahman MU, Mane SB, Khan WU, Sohail M, Rahman NU, Shaishta N, Chi Z, Wu M (2019) J Colloid Interface Sci 548:197–205

    Article  CAS  PubMed  Google Scholar 

  6. Bai Y, Zhao J, Feng S, Liang X, Wang C (2019) Chem Commun (Camb) 55:4651–4654

    Article  CAS  Google Scholar 

  7. Zeng M, Li Y, Mao M, Bai J, Ren L, Zhao X (2015) ACS Catal 5:3278–3286

    Article  CAS  Google Scholar 

  8. Zhang J, Luo W, Züttel A (2020) J Catal 385:140–145

    Article  CAS  Google Scholar 

  9. Luo W, Zhang Q, Zhang J, Moioli E, Zhao K, Züttel A (2020) Appl Catal B 273:119060

    Article  CAS  Google Scholar 

  10. Feng S, Zheng W, Zhu J, Li Z, Yang B, Wen Z, Lu J, Lei L, Wang S, Hou Y (2020) Appl Catal B 270:118908

    Article  CAS  Google Scholar 

  11. Guo L, Niu Y, Xu H, Li Q, Razzaque S, Huang Q, Jin S, Tan B (2018) J Mater Chem A 6:19775–19781

    Article  CAS  Google Scholar 

  12. Ren X, Gao M, Zhang Y, Zhang Z, Cao X, Wang B, Wang X (2020) Appl Catal B 274:119063

    Article  CAS  Google Scholar 

  13. Li P, Luo G, Zhu S, Guo L, Qu P, He T (2020) Appl Catal B 274:119063

    Article  Google Scholar 

  14. Chen X, He X, Yang X, Wu Z, Li Y (2020) J Taiwan Inst Chem Eng 107:98–109

    Article  CAS  Google Scholar 

  15. Lin Q, Li Z, Lin T, Li B, Liao X, Yu H, Yu C (2020) Chin J Chem Eng 28:2677–2688

    Article  CAS  Google Scholar 

  16. Song G, Chu Z, Jin W, Sun H (2015) Chin J Chem Eng 23:1326–1334

    Article  CAS  Google Scholar 

  17. Qi K (2020) Liu Sy, Zada A. J Taiwan Inst Chem Eng 109:111–123

    Article  CAS  Google Scholar 

  18. Gong Y, Li M, Li H, Wang Y (2015) Green Chem 17:715–736

    Article  CAS  Google Scholar 

  19. Cao S, Low J, Yu J, Jaroniec M (2015) Adv Mater 27:2150–2176

    Article  CAS  PubMed  Google Scholar 

  20. Sun F, Tan S, Zhang H, Xing Z, Yang R, Mei B, Jiang Z (2018) J Colloid Interface Sci 531:119–125

    Article  CAS  PubMed  Google Scholar 

  21. Li Z, Jin C, Wang M, Kang J, Wu Z, Yang D, Zhu T (2020) Sep Purif Technol 232:115937

    Article  CAS  Google Scholar 

  22. Zhu Z, Tang X, Wang T, Fan W, Liu Z, Li C, Huo P, Yan Y (2019) Appl Catal B 241:319–328

    Article  CAS  Google Scholar 

  23. Zhu Z, Ma C, Yu K, Lu Z, Liu Z, Huo P, Tang X, Yan Y (2020) Appl Catal B 268:118432

    Article  CAS  Google Scholar 

  24. Wang M, Guo P, Lv YZ, Liu T, Chai T, Xie Y, Wang Y, Zhu T (2018) Synthesis of hollow lantern-like Eu(III)-doped g-C3N4 with enhanced visible light photocatalytic perfomance for organic degradation. J Hazard Mater 349:224–233

    Article  CAS  PubMed  Google Scholar 

  25. Li C, Zhong WL, Gou QZ, Bai XK, Zhang GS, Lei CX (2020) J Mater Sci 31:3681–3694

    CAS  Google Scholar 

  26. Fu J, Zhu B, Jiang C, Cheng B, You W, Yu J (2017) Small 13:1603938

    Article  Google Scholar 

  27. Zhou P, Meng X, Li L, Sun T (2020) J Alloy Compd 827:154259

    Article  CAS  Google Scholar 

  28. Li C, Wang Y, Li C, Xu S, Hou X, Wu P (2019) ACS Appl Mater Interfaces 11:20770–20777

    Article  CAS  PubMed  Google Scholar 

  29. Wang J, Wang J, Li N, Du X, Ma J, He C, Li Z (2020) ACS Appl Mater Interfaces 12:31477–31485

    Article  CAS  PubMed  Google Scholar 

  30. Shahzad K, Tahir MB, Sagir M (2019) Int J Hydrogen Energy 44:21738–21745

    Article  CAS  Google Scholar 

  31. Wang W, Cheng H, Huang B, Liu X, Qin X, Zhang X, Dai Y (2015) J Colloid Interface Sci 442:97–102

    Article  CAS  PubMed  Google Scholar 

  32. Duan B, Mei L (2020) J Colloid Interface Sci 575:265–273

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Jin R, Xing Y, Li J, Song S, Liu X, Li M, Jin R (2016) Adv Energy Mater 6:1601273

    Article  Google Scholar 

  34. Tian N, Zhang Y, Li X, Xiao K, Du X, Dong F, Waterhouse GIN, Zhang T, Huang H (2017) Nano Energy 38:72–81

    Article  CAS  Google Scholar 

  35. Groenewolt M, Antonietti M (2005) Adv Mater 17:1789–1792

    Article  CAS  Google Scholar 

  36. Jenekhe SA, Lu L, Alam MM (2001) Macromolecules 34:7315–7324

    Article  CAS  Google Scholar 

  37. Zhang DS, Gao Q, Chang Z, Liu XT, Zhao B, Xuan ZH, Hu TL, Zhang YH, Zhu J, Bu XH (2018) Adv Mater 30:1804715

    Article  Google Scholar 

  38. Lan X, Li Q, Zhang Y, Li Q, Ricardez-Sandoval L, Bai G (2020) Appl Catal B 277:119274

    Article  CAS  Google Scholar 

  39. Zang S, Zhang G, Yang P, Zheng D, Wang X (2019) Chemistry 25:6102–6107

    Article  CAS  PubMed  Google Scholar 

  40. Mo Z, Di J, Yan P, Lv C, Zhu X, Liu D, Song Y, Liu C, Yu Q, Li H, Lei Y, Xu H, Yan Q (2020) Small 16:2003914

    Article  CAS  Google Scholar 

  41. Lan ZA, Zhang G, Chen X, Zhang Y, Zhang KAI, Wang X (2019) Angew Chem Int Ed Engl 58:10236–10240

    Article  CAS  PubMed  Google Scholar 

  42. Che H, Liu C, Che G, Liao G, Dong H, Li C, Song N, Li C (2020) Nano Energy 67:104273

    Article  CAS  Google Scholar 

  43. Yao L, Wei D, Ni Y, Yan D, Hu C (2016) Nano Energy 26:248–256

    Article  CAS  Google Scholar 

  44. Zhou C, Xu P, Lai C, Zhang C, Zeng G, Huang D, Cheng M, Hu L, Xiong W, Wen X, Qin L, Yuan J, Wang W (2019) Chem Eng J 359:186–196

    Article  CAS  Google Scholar 

  45. Fang J, Fan H, Li M, Long C (2015) J Mater Chem A 3:13819–13826

    Article  CAS  Google Scholar 

  46. Lv Z, Cheng X, Liu B, Guo Z, Zhang C (2020) Appl Surf Sci 504:144486

    Article  CAS  Google Scholar 

  47. Liu B, Ye L, Wang R, Yang J, Zhang Y, Guan R, Tian L, Chen X (2018) ACS Appl Mater Interfaces 10:4001–4009

    Article  CAS  PubMed  Google Scholar 

  48. Li C, Du Y, Wang D, Yin S, Tu W, Chen Z, Kraft M, Chen G, Xu R (2017) Adv Func Mater 27:1604328

    Article  Google Scholar 

  49. Jiang R, Lu G, Yan Z, Wu D, Zhou R, Bao X (2019) Chem Eng J 374:79–90

    Article  CAS  Google Scholar 

  50. Jiang R, Lu G, Nkoom M, Yan Z, Wu D, Liu J, Dang T (2020) Chem Eng J 400:125913

    Article  CAS  Google Scholar 

  51. Li B, Meng M, Cui Y, Wu Y, Zhang Y, Dong H, Zhu Z, Feng Y, Wu C (2019) Chem Eng J 365:405–414

    Article  CAS  Google Scholar 

  52. Li B, Wang H, Lan Y, Cui Y, Zhang Y, Feng Y, Pan J, Meng M, Wu C (2020) Chem Eng J 385:123907

    Article  CAS  Google Scholar 

  53. Cao K, Jiang Z, Zhang X, Zhang Y, Zhao J, Xing R, Yang S, Gao C, Pan F (2015) J Membr Sci 490:72–83

    Article  CAS  Google Scholar 

  54. Kumar A, Khan M, He J, Lo IMC (2020) Appl Catal B 270:118898

    Article  CAS  Google Scholar 

  55. Song X, Zhang X, Li X, Che H, Huo P, Ma C, Yan Y, Yang G (2020) J Colloid Interface Sci 578:574–583

    Article  CAS  PubMed  Google Scholar 

  56. Li X, Shen D, Liu C, Li J, Zhou Y, Song X, Huo P, Wang H, Yan Y (2019) J Colloid Interface Sci 554:468–478

    Article  CAS  PubMed  Google Scholar 

  57. Fan X, Zhang L, Cheng R, Wang M, Li M, Zhou Y, Shi J (2015) ACS Catal 5:5008–5015

    Article  CAS  Google Scholar 

  58. Xia P, Cheng B, Jiang J, Tang H (2019) Appl Surf Sci 487:335–342

    Article  CAS  Google Scholar 

  59. Li C, Che H, Huo P, Yan Y, Liu C, Dong H (2021) J Colloid Interface Sci 581:764–773

    Article  CAS  PubMed  Google Scholar 

  60. Li C, Che H, Yan Y, Liu C, Dong H (2020) Chem Eng J 398:125523

    Article  CAS  Google Scholar 

  61. Huang Y, Li D, Fang Z, Chen R, Luo B, Shi W (2019) Appl Catal B 254:128–134

    Article  CAS  Google Scholar 

  62. Hong Y, Li C, Yin B, Li D, Zhang Z, Mao B, Fan W, Gu W, Shi W (2018) Chem Eng J 338:137–146

    Article  CAS  Google Scholar 

  63. Sun S, Wang W, Li D, Zhang L, Jiang D (2014) ACS Catal 4:3498–3503

    Article  CAS  Google Scholar 

  64. Pan J, Wang B, Wang J, Ding H, Zhou W, Liu X, Zhang J, Shen S, Guo J, Chen L, Au C, Jiang L, Yin S (2021) Angew Chem Int Ed 60:1433–1440

    Article  CAS  Google Scholar 

  65. Lan D, Gong Y, Tan N, Wu S, Shen J, Yao K, Yi B, Au C, Yin S (2018) Carbon 127:245–254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 2176117), China Postdoctoral Science Foundation (2019M651728), Natural Science Foundation of Jiangsu Province (BK20180884).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 846 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Song, X., Yan, Y. et al. Construction of Carbon Nitride Based Intramolecular D–A System for Effective Photocatalytic Reduction of CO2. Catal Lett 152, 559–569 (2022). https://doi.org/10.1007/s10562-021-03644-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03644-2

Keywords

Navigation