Skip to main content
Log in

Boosting Creation of Oxygen Vacancies in Co-Co3O4 Homogeneous Hybrids for Aerobic Oxidation of Cyclohexane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Co-Co3O4 hybrids were synthesized by pyrolysis of Co2+/ZIF-67 precursors and employed into cyclohexane aerobic oxidation. Homogeneity degree of Co3O4 distribution in Co was affected by the cobalt loading. The homogeneity of Co-Co3O4 hybrids brought about the low crystallinity and declined reducibility of Co3O4, creation of abundant oxygen vacancies due to the existence of Co-Co3O4 interaction. As the cobalt loading increased the amount of surface oxygen vacancies presented the volcano shape and maximized at 65.3 wt%. The catalytic performance was positively correlated with surface oxygen vacancies and the highest conversion of 16.3% with 96.5% KA oil selectivity was obtained over 65Co-Co3O4/CN catalyst. Kinetic study revealed that the presence of abundant oxygen vacancies can effectively decrease the activation energy of cyclohexane oxidation via the promoted activation of O2. Additionally, water formed during cyclohexane oxidation was the main reason for the catalyst deactivation because of the preferred adsorption on the active sites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang L, Zhang Y, Yuan H, Du R, Yao J, Li H (2020). Catal Lett. https://doi.org/10.1007/s10562-020-03406-6

    Article  Google Scholar 

  2. Shen H, Qi B, Hu M, Liu L, Ye H, She Y (2020) Catal Lett 150:3096–3111

    CAS  Google Scholar 

  3. Hereijgers BPC, Weckhuysen BM (2010) J Catal 270:16–25

    CAS  Google Scholar 

  4. Zhang Q, Li Y, An D, Wang Y (2009) Appl Catal A 356:103–111

    CAS  Google Scholar 

  5. Chang H, Bjørgum E, Mihai O, Yang J, Lein HL, Grande T, Raaen S, Zhu Y, Holmen A, Chen D (2020) ACS Catal 10:3707–3719

    CAS  Google Scholar 

  6. Wang Z, Wu Y, Wu C, Xie J, Gu X, Yu P, Zong M, Gates ID, Liu H, Rong J (2020) Catal. Sci Technol 10:332–336

    CAS  Google Scholar 

  7. Qin Y, Wang H, Dong C, Qu Z (2019) J Catal 380:21–31

    CAS  Google Scholar 

  8. Graça I, Al-Shihri S, Chadwick D (2018) Appl Catal A 568:95–104

    Google Scholar 

  9. Ren Q, Feng Z, Mo S, Huang C, Li S, Zhang W, Chen L, Fu M, Wu J, Ye D (2019) Catal Today 332:160–167

    CAS  Google Scholar 

  10. Zhang X, Yang P, Liu Y, Pan J, Li D, Wang B, Feng J (2020) J Catal 385:146–159

    CAS  Google Scholar 

  11. Li M, Luo F, Zhang Q, Yang Z, Xu Z (2020) J Catal 381:395–401

    CAS  Google Scholar 

  12. Yu Y, Takei T, Ohashi H, He H, Zhang X, Haruta M (2009) J Catal 267:121–128

    CAS  Google Scholar 

  13. Wu M, Zhan W, Guo Y, Guo Y, Wang Y, Wang L, Lu G (2016) Appl Catal A 523:97–106

    CAS  Google Scholar 

  14. Sui C, Zhang T, Dong Y, Yuan F, Niu X, Zhu Y (2017) Mol Catal 435:174–181

    CAS  Google Scholar 

  15. Yan H, Yao S, Liang W, Zhao S, Jin X, Feng X, Liu Y, Chen X, Yang C (2020) J Catal 381:248–260

    CAS  Google Scholar 

  16. Li Y, Wang H, Li Y, Wang Q, Li D, Wang R, He B, Gong Y (2018) J Catal 364:48–56

    CAS  Google Scholar 

  17. Luo J, Meng M, Li X, Zha Y, Hu T, Xie Y, Zhang J (2008) J Catal 254:310–324

    CAS  Google Scholar 

  18. Lou Y, Wang L, Zhang Y, Zhao Z, Zhang Z, Lu G, Guo Y (2011) Catal Today 175:610–614

    CAS  Google Scholar 

  19. Pan Y, Wu G, He Y, Feng J, Li D (2019) J Catal 369:222–232

    CAS  Google Scholar 

  20. Yuan E, Liu H, Tao Y, Xie J, Jian R, Jian P, Liu J (2019) J Mol Model 25:71

    PubMed  Google Scholar 

  21. Liu P, Liu P, You K, Deng R, Chen Z, Jian J, Zhao F, Ai Q, Luo HA (2019) Mol Catal 466:130–137

    CAS  Google Scholar 

  22. Yao F, Xu L, Luo J, Li X, An Y, Wan C (2018) Korean J Chem Eng 35:853–858

    CAS  Google Scholar 

  23. Lin Y, Sun J, Li S, Wang D, Zhang C, Wang Z, Li X (2020) Catal Lett 150:3206–3213

    CAS  Google Scholar 

  24. Hermans I, Nguyen TL, Jacobs PA, Peeters J (2005) ChemPhysChem 6:637–645

    PubMed  CAS  Google Scholar 

  25. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) Z Kristallogr 220:567–570

    CAS  Google Scholar 

  26. McNellis ER, Meyer J, Reuter K (2009) Phys Rev B 80:205414

    Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    PubMed  CAS  Google Scholar 

  28. Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J (2003) Comp Mater Sci 28:250–258

    CAS  Google Scholar 

  29. Yuan E, Ni P, Zhuang W, Jian R, Jian P (2020) J Catal 382:256–268

    CAS  Google Scholar 

  30. Giordano L, Pacchioni G, Ferrari AM, Illas F, Rösch N (2001) Surf Sci 473:213–226

    CAS  Google Scholar 

  31. Lian Y, Fang T, Zhang Y, Liu B, Li J (2019) J Catal 379:46–51

    CAS  Google Scholar 

  32. Shen K, Chen L, Long J, Zhong W, Li Y (2015) ACS Catal 5:5264–5271

    CAS  Google Scholar 

  33. Rubio-Marcos F, Calvino-Casilda V, Bañares MA, Fernandez JF (2010) J Catal 275:288–293

    CAS  Google Scholar 

  34. Tang C, Wang C, Chien S (2008) Thermochim Acta 473:68–73

    CAS  Google Scholar 

  35. El-Shobaky GA, Hewaidy IF, El-Nabarawy T (1981) Surf Tech 12:309–315

    CAS  Google Scholar 

  36. Song W, Poyraz AS, Meng Y, Ren Z, Chen S, Suib SL (2014) Chem Mater 26:4629–4639

    CAS  Google Scholar 

  37. Yuan E, Wu C, Hou X, Dou M, Liu G, Li G, Wang L (2017) J Catal 347:79–88

    CAS  Google Scholar 

  38. Yuan E, Gu M, Jian P (2020) Korean J Chem Eng 37:1137–1148

    CAS  Google Scholar 

  39. Spadaro L, Arena F, Granados M, Ojeda M, Fierro J, Frusteri F (2005) J Catal 234:451–462

    CAS  Google Scholar 

  40. Yan X, Tian L, He M, Chen X (2015) Nano Lett 15:6015–6021

    PubMed  CAS  Google Scholar 

  41. Tang W, Yao M, Deng Y, Li X, Han N, Wu X, Chem Y (2016) Eng J 306:709–718

    CAS  Google Scholar 

  42. Li L, Li H, Jin C, Wang X, Ji W, Pan Y, van der Knaap T, van der Stoel R, Au CT (2010) Catal Lett 136:20–27

    CAS  Google Scholar 

  43. Unnarkat AP, Sridhar T, Wang H, Mahajani S, Suresh AK (2016) AICHE J 62:4384–4402

    CAS  Google Scholar 

  44. Yuan E, Wu C, Liu G, Li G, Wang L (2018) J Ind Eng Chem 66:158–167

    CAS  Google Scholar 

  45. Hong Y, Fang Y, Zhou X, Du G, Mai J, Sun D, Shao Z (2019) Ind Eng Chem Res 58:19832–19838

    CAS  Google Scholar 

  46. Muhumuza E, Wu P, Nan T, Zhao L, Bai P, Mintova S, Yan Z (2020) Ind Eng Chem Res 59:21322–21332

    CAS  Google Scholar 

  47. Unnarkat AP, Sridhar T, Wang H, Mahajani SM, Suresh AK (2018) Catal Today 310:116–129

    CAS  Google Scholar 

  48. Ramimoghadam D, Bagheri S, Yousefi AT, Abd Hamid SB (2015) J. Magn. Magn. Mater. 393:30–35

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from Jiangsu Province Natural Science Foundation of China (BK20180935) and Yangzhou City Lvyangjinfeng Project of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enxian Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, E., Zhou, M., Gu, M. et al. Boosting Creation of Oxygen Vacancies in Co-Co3O4 Homogeneous Hybrids for Aerobic Oxidation of Cyclohexane. Catal Lett 152, 282–298 (2022). https://doi.org/10.1007/s10562-021-03638-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03638-0

Keywords

Navigation