Skip to main content
Log in

Synthesis of Few Layer Amorphous 1T/2H MoS2 by a One-Step Ethanol/Water Solvothermal Method and Its Hydrodesulfurization Performance

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Few layer (< 5 layers) MoS2 mixed with a 1T phase has the characteristics of a large specific surface area and an improved active site distribution. Therefore, it has been increasingly study for the catalytic hydrodesulfurization of polycyclic compounds. In this paper, few-layer MoS2 with a high proportion of the 1T phase is synthesized by a one-step solvothermal method using a green non-toxic ethanol/water solvent. Results show that few-layer MoS2 (3–5 layers) with a 1T phase up to 48% can be synthesized in a 50% ethanol solvent. This MoS2 is used to catalyse the hydrodesulfurization reaction of dibenzothiophene, and the target product conversion rate reaches 84.2%. Among them, biphenyl accounts for 70.2%, phenylcyclohexane accounts for 13.9%, and bicyclohexane accounts for 0.4%. According to the Hansen solubility parameter (HSP) distance Ra, the effects of solvents on the structure and morphology of MoS2 and the conversion of dibenzothiophene hydrodesulfurization are determined. This work is significant for the synchronous synthetic exfoliation of MoS2 with a controllable number of layers, a higher ratio of the 1T phase and good catalytic HDS of polycyclic compounds.

Graphic Abstract

Few layers and high proportion of 1T phase MoS2 by solvothermal synthesis for catalytic hydrodesulfurization of dibenzothiophene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hussain M, Ihm SK (2009) Synthesis, characterization, and hydrodesulfurization activity of new mesoporous carbon supported transition metal sulfide catalysts. Ind Eng Chem Res 48:698–707. https://doi.org/10.1021/ie801229y

    Article  CAS  Google Scholar 

  2. Hussain M, Yun JS, Ihm SK, Russo N, Geobaldo F (2011) Synthesis, characterization, and thiophene hydrodesulfurization activity of novel macroporous and mesomacroporous carbon. Ind Eng Chem Res 50:2530–2535. https://doi.org/10.1021/ie100574w

    Article  CAS  Google Scholar 

  3. Hussain M, Song SK, Ihm SK (2013) Synthesis of hydrothermally stable MCM-41 by the seed crystallization and its application as a catalyst support for hydrodesulfurization. Fuel 106:787–792. https://doi.org/10.1016/j.fuel.2012.11.031

    Article  CAS  Google Scholar 

  4. Rao BG, Matte HSSR, Chaturbedy P, Rao CNR (2013) Hydrodesulfurization of thiophene over few-layer MoS2 covered with cobalt and nickel nanoparticles. ChemPlusChem 78:419–422. https://doi.org/10.1002/cplu.201300012

    Article  CAS  Google Scholar 

  5. Coleman JN, Lotya M, O’neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571. https://doi.org/10.1126/science.1194975

    Article  PubMed  CAS  Google Scholar 

  6. Hussain M, Ihm SK (2007) Characteristics of mesoporous carbons supported Mo catalysts in thiophene hydrodesulfurization. Stud Surf Sci Catal 170:1368–1373. https://doi.org/10.1016/S0167-2991(07)81002-0

    Article  Google Scholar 

  7. Lee JJ, Kim H, Moon SH (2003) Preparation of highly loaded, dispersed MoS2/Al2O3 catalysts for the deep hydrodesulfurization of dibenzothiophenes. Appl Catal B 41:171–180. https://doi.org/10.1016/S0926-3373(02)00209-6

    Article  CAS  Google Scholar 

  8. Miremadi BK, Morrison SR (1987) High activity catalyst from exfoliated MoS2. J Catal 103:334–345. https://doi.org/10.1016/0021-9517(87)90125-4

    Article  CAS  Google Scholar 

  9. Nguyen TP, Van Le Q, Choi KS, Oh JH, Kim YG, Lee SM, Chang ST, Cho YH, Choi S, Kim TY, Kim SY (2015) MoS2 nanosheets exfoliated by sonication and their application in organic photovoltaic cells. Sci Adv Mater 7:700–705. https://doi.org/10.1166/sam.2015.1891

    Article  CAS  Google Scholar 

  10. Wang M, Li G, Xu H, Qian Y, Yang J (2013) Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl Mater Interfaces 5:1003–1008. https://doi.org/10.1021/am3026954

    Article  PubMed  CAS  Google Scholar 

  11. Yue L, Li G, Zhang F, Chen L, Li X, Huang X (2016) Size-dependent activity of unsupported Co-Mo sulfide catalysts for the hydrodesulfurization of dibenzothiophene. Appl Catal A 512:85–92. https://doi.org/10.1016/j.apcata.2015.12.016

    Article  CAS  Google Scholar 

  12. Zhou KG, Mao NN, Wang HX, Peng Y, Zhang HL (2011) A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew Chem Int Ed 50:10839–10842. https://doi.org/10.1002/anie.201105364

    Article  CAS  Google Scholar 

  13. Li G, Li Y, Lin G, Wang D, Guo P, Li X, Chung KH (2020) Synthesis of unsupported Co-Mo hydrodesulfurization catalysts with ethanol-water mixed solvent: effects of the ethanol/water ratio on active phase composition, morphology and activity. Appl Catal A 602:117663. https://doi.org/10.1016/j.apcata.2020.117663

    Article  CAS  Google Scholar 

  14. Li M, Wang D, Li J, Pan Z, Ma H, Jiang X, Tian Z (2016) Facile hydrothermal synthesis of MoS2 nano-sheets with controllable structures and enhanced catalytic performance for anthracene hydrogenation. RSC Adv 6:71534–71542. https://doi.org/10.1039/c6ra16084k

    Article  CAS  Google Scholar 

  15. Zhang S, Liu D, Deng W, Que G (2007) A review of slurry-phase hydrocracking heavy oil technology. Energy Fuels 21:3057–3062. https://doi.org/10.1021/ef700253f

    Article  CAS  Google Scholar 

  16. Nikulshin PA, Salnikov VA, Mozhaev AV, Minaev PP, Kogan VM, Pimerzin AA (2014) Relationship between active phase morphology and catalytic properties of the carbon-alumina-supported Co(Ni)Mo catalysts in HDS and HYD reactions. J Catal 309:386–396. https://doi.org/10.1016/j.jcat.2013.10.020

    Article  CAS  Google Scholar 

  17. Sal’Nikov VA, Nikul’Shin PA, Pimerzin AA (2013) The catalytic properties of transition metal sulfides synthesized from Anderson-type heteropoly compounds in hydrogenation, hydrodesulfurization, and hydrodenitrogenation reactions. Pet Chem 53:233–244. https://doi.org/10.1134/S0965544113040129

    Article  CAS  Google Scholar 

  18. Xing L, Jiao LY (2016) Recent advances in the chemical doping of two-dimensional molybdenum disulfide. Acta Phys Chim Sin 32:2133–2145. https://doi.org/10.3866/PKU.WHXB201606162

    Article  CAS  Google Scholar 

  19. Chianelli RR (2006) Periodic trends transition metal sulfide catalysis: intuition and theory. Oil Gas Sci Technol 61:503–513. https://doi.org/10.2516/ogst:2006022a

    Article  CAS  Google Scholar 

  20. Hussain M, Song SK, Lee JH, Ihm SK (2006) Characteristics of CoMo catalysts supported on modified MCM-41 and MCM-48 materials for thiophene hydrodesulfurization. Ind Eng Chem Res 45:536–543. https://doi.org/10.1021/ie058064b

    Article  CAS  Google Scholar 

  21. Yang J, Wang K, Zhu J, Zhang C, Liu T (2016) Self-templated growth of vertically aligned 2H–1T MoS2 for efficient electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces 8:31702–31708. https://doi.org/10.1021/acsami.6b11298

    Article  PubMed  CAS  Google Scholar 

  22. Cai L, He J, Liu Q, Yao T, Chen L, Yan W, Hu F, Jiang Y, Zhao Y, Hu T, Sun Z, Wei S (2015) Vacancy-induced ferromagnetism of MoS2 nanosheets. J Am Chem Soc 137:2622–2627. https://doi.org/10.1021/ja5120908

    Article  PubMed  CAS  Google Scholar 

  23. Kosidowski L, Powell AV (1998) Naphthalene intercalation into molybdenum disulfide. Chem Commun 130:2201–2202. https://doi.org/10.1039/a805984e

    Article  Google Scholar 

  24. Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, Xie Y (2013) Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135:17881–17888. https://doi.org/10.1021/ja408329q

    Article  PubMed  CAS  Google Scholar 

  25. Luo H, Xu C, Zou D, Wang L, Ying T (2008) Hydrothermal synthesis of hollow MoS2 microspheres in ionic liquids/water binary emulsions. Mater Lett 62:3558–3560. https://doi.org/10.1016/j.matlet.2008.03.050

    Article  CAS  Google Scholar 

  26. Peng Y, Meng Z, Zhong C, Lu J, Yang Z, Qian Y (2002) Tube- and ball-like amorphous MoS2 prepared by a solvothermal method. Mater Chem Phys 73:327–329. https://doi.org/10.1016/S0254-0584(01)00364-9

    Article  CAS  Google Scholar 

  27. Daage M, Chianelli RR (1994) Structure-function relations in molybdenum sulfide catalysts: the “Rim-Edge” model. J Catal 149:414–427. https://doi.org/10.1006/jcat.1994.1308

    Article  CAS  Google Scholar 

  28. Romero L, Del Valle M, Romero-Rivera R, Alonso G, Ávalos-Borja M, Fuentes S, Paraguay-Delgado F, Cruz-Reyes J (2015) MoS2 catalysts derived from n-methylenediammonium thiomolybdates during HDS of DBT. Catal Today 250:66–71. https://doi.org/10.1016/j.cattod.2014.03.024

    Article  CAS  Google Scholar 

  29. Berhault G, Mehta A, Pavel AC, Yang J, Rendon L, Y´acaman MJ, Araiza LC, Moller AD, Chianelli RR (2001) The role of structural carbon in transition metal sulfides hydrotreating catalysts. J Catal 198:9–19. https://doi.org/10.1006/jcat.2000.3124

    Article  CAS  Google Scholar 

  30. Huang G, Chen T, Chen W, Wang Z, Chang K, Ma L, Huang F, Chen D, Lee JY (2013) Graphene-like MoS2/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Small 9:3693–3703. https://doi.org/10.1002/smll.201300415

    Article  PubMed  CAS  Google Scholar 

  31. Sanchez W, Benavente E, Santa Ana MA, Gonzalez G (1999) High electronic conductivity molybdenum disulfide-dialkylamine nanocomposites. Chem Mater 11:2296–2298. https://doi.org/10.1021/cm9900711

    Article  CAS  Google Scholar 

  32. Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D (2012) From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater 22:1385–1390. https://doi.org/10.1002/adfm.201102111

    Article  CAS  Google Scholar 

  33. Shi ZT, Kang W, Xu J, Sun YW, Jiang M, Ng TW, Xue HT, Yu DYW, Zhang W, Lee CS (2016) Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22:27–37. https://doi.org/10.1016/j.nanoen.2016.02.009

    Article  CAS  Google Scholar 

  34. Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z (2015) Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv Mater 27:1117–1123. https://doi.org/10.1002/adma.201404622

    Article  PubMed  CAS  Google Scholar 

  35. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299. https://doi.org/10.1021/ja201269b

    Article  PubMed  CAS  Google Scholar 

  36. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277. https://doi.org/10.1021/ja404523s

    Article  PubMed  CAS  Google Scholar 

  37. Wang H, Lu Z, Kong D, Sun J, Hymel TM, Cui Y (2014) Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 8:4940–4947. https://doi.org/10.1021/nn500959v

    Article  PubMed  CAS  Google Scholar 

  38. Gupta U, Naidu BS, Maitra U, Singh A, Shirodkar SN, Waghmare UV, Rao CNR (2014) Characterization of few-layer 1T-MoSe2 and its superior performance in the visible-light induced hydrogen evolution reaction. APL Mater 2:092802. https://doi.org/10.1063/1.4892976

    Article  CAS  Google Scholar 

  39. Voiry D, Goswami A, Kappera R, Silva CCC, Kaplan D, Fujita T, Chen M, Asefa T, Chhowalla M (2015) Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat Chem 7:45–49. https://doi.org/10.1038/nchem.2108

    Article  PubMed  CAS  Google Scholar 

  40. Calandra M (2013) Chemically exfoliated single-layer MoS2: stability, lattice dynamics, and catalytic adsorption from first principles. Phys Rev B 88:1–6. https://doi.org/10.1103/PhysRevB.88.245428

    Article  CAS  Google Scholar 

  41. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4:2695–2700. https://doi.org/10.1021/nn1003937

    Article  PubMed  CAS  Google Scholar 

  42. Ambrosi A, Sofer Z, Pumera M (2015) 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem Commun 51:8450–8453. https://doi.org/10.1039/c5cc00803d

    Article  CAS  Google Scholar 

  43. Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227. https://doi.org/10.1021/nl403661s

    Article  PubMed  CAS  Google Scholar 

  44. Zhang H, Lin H, Zheng Y, Hu Y, MacLennan A (2015) Understanding of the effect of synthesis temperature on the crystallization and activity of nano-MoS2 catalyst. Appl Catal B 165:537–546. https://doi.org/10.1016/j.apcatb.2014.10.046

    Article  CAS  Google Scholar 

  45. Shafiq I, Shafique S, Akhter P, Yang W, Hussain M (2020) Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: a technical review. Catal Rev Sci Eng 00:1–86. https://doi.org/10.1080/01614940.2020.1780824

    Article  CAS  Google Scholar 

  46. Girgis MJ, Gates BC (1991) Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing. Ind Eng Chem Res 30:2021–2058. https://doi.org/10.1021/ie00057a001

    Article  CAS  Google Scholar 

  47. Shi Y, Wang G, Mei J, Xiao C, Hu D, Wang A, Song Y, Ni Y, Jiang G, Duan A (2020) The influence of pore structure and acidity on the hydrodesulfurization of dibenzothiophene over NiMo-supported catalysts. ACS Omega 5:15576–15585. https://doi.org/10.1021/acsomega.0c01783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Trakarnpruk W, Seentrakoon B (2007) Hydrodesulfurization activity of MoS2 and bimetallic catalysts prepared by in situ decomposition of thiosalt. Ind Eng Chem Res 46:1874–1882. https://doi.org/10.1021/ie061176y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science of China (Grant Nos. 21166022, 21766033) and the foundation of Key Laboratory of Cleaner Transition of Coal & Chemicals Engineering of Xinjiang University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Investigation, Methodology, Writing-original draft: JW; Methodology and performance characterization: HH; Revised manuscript and Methodology: QL; Supervision, Validation: NL; Investigation: XW; Investigation: XW; Investigation: MZ; Conceptualization, Writing—review & editing: XH (Corresponding author). All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xueli Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Huang, H., Luo, Q. et al. Synthesis of Few Layer Amorphous 1T/2H MoS2 by a One-Step Ethanol/Water Solvothermal Method and Its Hydrodesulfurization Performance. Catal Lett 152, 263–275 (2022). https://doi.org/10.1007/s10562-021-03621-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03621-9

Keywords

Navigation