Skip to main content

Advertisement

Log in

Ag and Cu Nanoparticles Synergistically Enhance Photocatalytic CO2 Reduction Activity of B Phase TiO2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Considering that CO2 is a harmful greenhouse gas, the effective conversion of this compound to high-value hydrocarbons is highly desirable, but also challenging. Herein, we synthesize a series of Cu- and Ag-modified TiO2 (B phase) photocatalysts, and we analyze their efficiency in catalyzing the photoreduction of CO2 in the presence of H2O and simulated solar irradiation. The obtained results show that the TiO2(B) catalyst modified with 1% Ag and 0.5% Cu has the best photoreduction performance, with CO and CH4 yields of 860 and 410 μmol/g, respectively, after for 3 h of reaction. Based on CO2-TPD testing, Cu enhances the photocatalytic activity of TiO2(B) by adsorbing and activating CO2. Meanwhile, the Ag nanoparticles increase the absorption of visible light through surface plasmonic resonance effect (SPR), and they transfer electrons to the TiO2(B) nanosheets. The transferred electrons migrate to the Cu particles where they reduce the adsorbed and activated CO2. This study provides an effective method for improving the photocatalytic CO2 reduction performance of TiO2(B)-based catalysts.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Angew Chem Int Ed Engl 52:7372–7408

    Article  PubMed  CAS  Google Scholar 

  2. Lang XJ, Chen XD, Zhao JC (2014) Chem Soc Rev 43:473–486

    Article  PubMed  CAS  Google Scholar 

  3. Chen DN, Zhang XG, Lee AF (2015) J Mater Chem A 3:14487–14516

    Article  CAS  Google Scholar 

  4. Tu WG, Zhou Y, Zou ZG (2014) Adv Mater 26:4607–4626

    Article  PubMed  CAS  Google Scholar 

  5. Yu WL, Xu DF, Peng TY (2015) J Mater Chem A 3:19936–19947

    Article  CAS  Google Scholar 

  6. Zhu SY, Liang SJ, Bi JH, Liu MH, Zhou LM, Wu L, Wang XX (2016) Green Chem 18:1355–1363

    Article  CAS  Google Scholar 

  7. Yuan L, Hung SF, Tang ZR, Chen HM, Xiong YJ, Xu YJ (2019) ACS Catal 9:4824–4833

    Article  CAS  Google Scholar 

  8. Li JY, Yuan L, Li SH, Tang ZR, Xu YJ (2019) J Mater Chem A 7:8676–8689

    Article  CAS  Google Scholar 

  9. Yuan L, Lu KQ, Zhang F, Fu XZ, Xu YJ (2019) Appl Catal B 237:424–431

    Article  Google Scholar 

  10. Yuan L, Xu YJ (2015) Appl Surf Sci 342:154–167

    Article  CAS  Google Scholar 

  11. Yuan L, Li YH, Tang ZR, Gong JL, Xu YJ (2020) J Catal 390:244–250

    Article  CAS  Google Scholar 

  12. Liang YC, Wang CC, Kei CC, Hsueh YC, Cho WH, Perng TP (2011) J Phys Chem C 115:9498–9502

    Article  CAS  Google Scholar 

  13. Chen LJ, Chen F, Shi YF, Zhang JL (2012) J Phys Chem C 116:8579–8586

    Article  CAS  Google Scholar 

  14. Zhou WJ, Liu H, Wang JY, Liu D, Du GJ, Cui JJ (2010) ACS Appl Mater Interfaces 2:2385–2392

    Article  PubMed  CAS  Google Scholar 

  15. Zhang XM, Chen YL, Liu RS, Tsai DP (2013) Rep Prog Phys 76:046401

    Article  PubMed  Google Scholar 

  16. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Chem Rev 114:9919–9986

    Article  PubMed  CAS  Google Scholar 

  17. Jiang TT, Jia CC, Zhang LC, He SR, Sang YH, Li HD, Li YQ, Xu XH, Liu H (2015) Nanoscale 7:209–217

    Article  PubMed  CAS  Google Scholar 

  18. Tanaka A, Ogino A, Iwaki M, Hashimoto K, Ohnuma A, Amano F, Ohtani B, Kominami H (2012) Langmuir 28:13105–13111

    Article  PubMed  CAS  Google Scholar 

  19. Zhao W, Feng L, Yang R, Zheng J, Li XG (2011) Appl Catal B 103:181–189

    Article  CAS  Google Scholar 

  20. Kochuveedu ST, Kim DP, Kim DH (2012) J Phys Chem C 116:2500–2506

    Article  CAS  Google Scholar 

  21. DuChene JS, Sweeny BC, Johnston-Peck AC, Su D, Stach EA, Wei WD (2014) Angew Chem Int Ed Engl 53:7887–7891

    Article  PubMed  CAS  Google Scholar 

  22. Ma XC, Dai Y, Yu L, Huang BB (2016) Light Sci Appl 5:e16017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tian J, Sang YH, Zhao ZH, Zhou WJ, Wang DZ, Kang XL, Liu H, Wang JY, Chen SW, Cai HQ, Huang H (2013) Small 9:3864–3872

    Article  PubMed  CAS  Google Scholar 

  24. Sun JJ, Li XY, Zhao QD, Ke J, Zhang DK (2014) J Phys Chem C 118:10113–10121

    Article  CAS  Google Scholar 

  25. Choi WY, Termin A, Hoffmann MR (1994) J Phys Chem 98:13669–13679

    Article  Google Scholar 

  26. He ZQ, Xie L, Tu JJ, Song S, Liu WP, Liu ZW, Fan JQ, Liu Q, Chen JM (2010) J Phys Chem C 114:526–532

    Article  CAS  Google Scholar 

  27. Wang J, Tafen DN, Lewis JP, Hong ZL, Manivannan A, Zhi MJ, Li M, Wu NQ (2009) J Am Chem Soc 131:12290–12297

    Article  PubMed  CAS  Google Scholar 

  28. Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi CL, Psaro R, Dal Santo V (2012) J Am Chem Soc 134:7600–7603

    Article  PubMed  CAS  Google Scholar 

  29. Kong M, Li YZ, Chen X, Tian TT, Fang PF, Zheng F, Zhao XJ (2011) J Am Chem Soc 133:16414–16417

    Article  PubMed  CAS  Google Scholar 

  30. Paul KK, Ghosh R, Giri PK (2016) Nanotechnology 27:315703

    Article  PubMed  Google Scholar 

  31. Yin R, Ling L, Lu SH, Li HR, Li CC, Shang C (2020) Chemosphere 260:127644

    Article  PubMed  CAS  Google Scholar 

  32. Ortiz-Bustos J, Gomez-Ruiz S, Mazario J, Domine ME, del Hierro I, Perez Y (2020) Catal Sci Technol 10:6511–6524

    Article  CAS  Google Scholar 

  33. Martinez-Montelongo JH, Medina-Ramirez IE, Romo-Lozano Y, Zapien JA (2020) Chemosphere 257:12736

    Article  Google Scholar 

  34. Sudrajat H, Nguyen TK (2020) Optik 217:164914

    Article  CAS  Google Scholar 

  35. Cheng G, Zhang MM, Han C, Liang Y, Zhao K (2020) Mater Res Bull 129:110891

    Article  CAS  Google Scholar 

  36. Li X, Yu JG, Jaroniec M, Chen XB (2019) Chem Rev 119:3962–4179

    Article  PubMed  CAS  Google Scholar 

  37. Vu NN, Nguyen CC, Kaliaguine S, Do T-O (2017) Adv Sustain Syst 1:1700048

    Article  Google Scholar 

  38. Wang P, Cao YJ, Xu SQ, Yu HG (2020) Appl Surf Sci 532:147420

    Article  CAS  Google Scholar 

  39. Lee YJ, Kang JK, Park SJ, Lee CG, Moon JK, Alvarez PJJ (2020) Chem Eng J 402:126183

    Article  CAS  Google Scholar 

  40. Wu HK, Li YH, Qi MY, Lin Q, Xu YJ (2020) Appl Catal B 278:119267

    Article  CAS  Google Scholar 

  41. Guo W, Zou JH, Guo BB, Xiong JH, Liu C, Xie ZH, Wu L (2020) Appl Catal B 277:119255

    Article  CAS  Google Scholar 

  42. Lopes FCSMR, da Rocha MDC, Bargiela P, Ferreira HS, Pires CA (2020) Chem Eng Sci 227:115939

    Article  CAS  Google Scholar 

  43. Armstrong AR, Armstrong G, Canales J, Bruce PG (2004) Angew Chem Int Ed Engl 43:2286–2288

    Article  PubMed  CAS  Google Scholar 

  44. Haque SM, De R, Tripathi S, Sharma RK, Polaki SR, Rao KD (2020) J Alloys Compds 849:156553

    Article  CAS  Google Scholar 

  45. Saran S, Manjari G, Devipriya SP (2018) J Clean Prod 177:134–143

    Article  CAS  Google Scholar 

  46. San Nwe TS, Sikong L, Kokoo R, Khangkhamano M (2020) Curr Appl Phys 20:249–254

    Article  Google Scholar 

  47. Luo X, Ke YM, Yu L, Wang Y, Homewood KP, Chen XX, Gao Y (2020) Appl Surf Sci 515:145970

    Article  CAS  Google Scholar 

  48. Neatu S, Macia-Agullo JA, Concepcion P, Garcia H (2014) J Am Chem Soc 136:15969–15976

    Article  PubMed  CAS  Google Scholar 

  49. Wang C, Dong SS, Wang YF, Guo TL, Gao GD, Lu ZD, Pan BC (2020) Chem Eng J 397:125435

    Article  CAS  Google Scholar 

  50. Paul KK, Giri PK, Sugimoto H, Fujii M, Choudhury B (2019) Sol Energy Mater Sol Cells 201:110053

    Article  CAS  Google Scholar 

  51. Deng X, Li R, Wu S, Wang L, Hu J, Ma J, Jiang W, Zhang N, Zheng X, Gao C, Wang L, Zhang Q, Zhu J, Xiong Y (2019) J Am Chem Soc 147:10924–10929

    Article  Google Scholar 

  52. Shi H, Long S, Hu S, Hou J, Ni W, Song C, Li K, Gurzadyan GG, Guo X (2019) Appl Catal B Environ 245:760–769

    Article  CAS  Google Scholar 

  53. Luo SQ, Song H, Philo D, Oshikiri M, Kako T, Ye JH (2020) Appl Catal B 272:118965

    Article  CAS  Google Scholar 

  54. Zhang RH, Wang H, Tang SY, Liu CJ, Dong F, Yue HR, Liang B (2018) ACS Catal 8:9280–9286

    Article  CAS  Google Scholar 

  55. Li NX, Liu XC, Zhou JC, Chen WS, Liu MC (2020) Chem Eng J 399:125782

    Article  CAS  Google Scholar 

  56. Li NX, Jiang RM, Li Y, Zhou JC, Ma QH, Shen SH, Liu MC (2019) ACS Sustain Chem Eng 7:11455–11463

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Foundation of Jiangsu Key Laboratory for Biomass Energy and Material (JSBEM202001), National Natural Science Foundation of China (No. 22078057, No. 21576050 and No. 51602052), Fundamental Research Funds for the Central Universities of China (No. 3207045403, 3207045409, 3207046414), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Zhongying Young Scholars of Southeast University, Applied Basic Research Program of Suzhou (SYG202026), Postgraduate Research and Practice Innovation Program of Jiangsu Province (SJCX20_0014, SJCX20_0015), and Innovation Platform Project Supported by Jiangsu Province of China (6907041203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naixu Li or Jiancheng Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information (DOCX 3686 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Geng, D. & Zhou, J. Ag and Cu Nanoparticles Synergistically Enhance Photocatalytic CO2 Reduction Activity of B Phase TiO2. Catal Lett 152, 124–138 (2022). https://doi.org/10.1007/s10562-021-03618-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03618-4

Keywords

Navigation