Skip to main content
Log in

HCHO Catalytic Oxidation Performance over Cerium Containing MCM-41 Type Mesoporous Materials Supported Ag Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Understanding the effects of cerium in the formaldehyde (HCHO) catalytic oxidation performance over Ag/MCM-41 catalysts, cerium modified MCM-41 mesoporous materials (Ce-MCM-41) with different ratios were synthesized by one-step hydrothermal method. The activity test results showed that Ag/Ce-MCM-41 with the ratio of Si:Ce = 1:1 catalysts could reach complete HCHO oxidation above 130 °C. These Ag/Ce-MCM-41 catalysts with different Si:Ce ratios were characterized by IR, SXRD, XRD, TEM, UV–Vis, Raman, XPS and H2-TPR. The results show that the interactions between Ag and Ce, between Ce and SiO2 in our Ag/Ce-MCM-41 are enhanced due to adding Ce to MCM-41. The presence of Ce-SiO2 interaction dramatically enhances the reducibility of surface-capping oxygen of CeO2, promotes the bulk oxygen migration to the surface and creates oxygen vacancies in the bulk region of CeO2 and the presence of more oxygen vacancies can facilitate the anchoring and dispersing of Ag particles, which lastly improves the interaction between Ag and Ce. In addition, the amount of formed oxygen vacancy is the highest when the Si:Ce = 1:1. The activation of surface oxygen is closely related to oxygen vacancy, O2 may be transformed into the highly active O2. The high active O2 in surface adsorbed oxygen promotes the activation of oxygen molecules and enhanced the catalytic oxidation of HCHO.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lu S, Li K, Huang F, Chen C, Sun B (2017) Appl Surf Sci 400:277–282

    Article  CAS  Google Scholar 

  2. Jia M, Bai H, Zhao R, Shen Y, Li Y (2008) J Rare Earths 26:528–531

    Article  Google Scholar 

  3. Yong CH, Ke QS, Ke HH, Liu G, Bo QX (2010) Catal Today 158:415–422

    Article  Google Scholar 

  4. Yan Z, Xu Z, Yu J, Jaroniec M (2016) Appl Catal B-Environ 199:458–465

    Article  CAS  Google Scholar 

  5. Ma L, Wang D, Li J, Bai B, Fu L, Li Y (2014) Appl Catal B-Environ 148:14936–14943

    Google Scholar 

  6. Chen D, Shi J, Yao Y, Wang S, Wu C (2019) React Kinet Mech Catal 127:315–329

    Article  CAS  Google Scholar 

  7. Chen D, Qu Z, Lv Y, Lu X, Chen W, Gao X (2015) J Mol Catal A Chem 404–405:98–105

    Article  Google Scholar 

  8. Chen D, Qu Z, Sun Y, Gao K, Wang Y (2013) Appl Catal B-Environ 142–143:838–848

    Article  Google Scholar 

  9. Chen D, Qu Z, Shen S, Li X, Shi Y, Wang Y, Fu Q, Wu J (2011) Catal Today 175:338–345

    Article  CAS  Google Scholar 

  10. Yin AY, Wen C, Wei LD, Fan KN (2011) Appl Catal B Environ 108–109:90–99

    Article  Google Scholar 

  11. Kumar N, Konova PM, Naydenov A, Heikillä T, Salmi T, Murzin DY (2004) Catal Lett 98:57–60

    Article  CAS  Google Scholar 

  12. Qu Z, Chen D, Sun Y, Wang Y (2014) Appl Catal A Gen 487:100–109

    Article  CAS  Google Scholar 

  13. Na H, Zhu T, Liu Z (2014) Catal Sci Technol 4:2051–2057

    Article  CAS  Google Scholar 

  14. Ma C, Wang D, Xue W, Dou B, Wang H, Hao Z (2011) Environ Sci Technol 45:3628–3634

    Article  PubMed  CAS  Google Scholar 

  15. Chen J, Yan D, Xu Z, Chen X, Chen X, Xu W, Jia H, Chen J (2018) Environ Sci Technol 52:4728–4737

    Article  PubMed  CAS  Google Scholar 

  16. Xia Y, Dai H, Zhang L, Deng J, He H, Chak TA (2010) Appl Catal B Environ 100:229–237

    Article  CAS  Google Scholar 

  17. Bai L, Wyrwalski F, Lamonier JF, Khodakov AY, Monflier E, Ponchel A (2013) Appl Catal B Environ 138–139:381–390

    Article  Google Scholar 

  18. Beste A, Overbury SH (2016) Surf Sci 648:242–249

    Article  CAS  Google Scholar 

  19. Imamura S, Uchihori D, Utani K, Ito T (1994) Catal Lett 24:377–384

    Article  CAS  Google Scholar 

  20. Pino L, Vita A, Cipitì F, Laganà M, Recupero V (2011) Appl Catal B Environ 104:64–73

    Article  CAS  Google Scholar 

  21. Dai Q, Wang X, Chen G, Zheng Y, Lu G (2007) Microporous Mesoporous Mat 100:268–275

    Article  CAS  Google Scholar 

  22. Wang S, Zhao C, Wang D, Wang Y, Liu F (2016) RSC Adv 6:18800–18808

    Article  CAS  Google Scholar 

  23. Pal N, Cho EB, Kim D (2014) RSC Adv 4:9213–9222

    Article  CAS  Google Scholar 

  24. Shi X, Ji S, Wang K (2008) Catal Lett 125:331–339

    Article  CAS  Google Scholar 

  25. Wang K, Li X, Ji S, Shi X, Tang J (2009) Energy Fuels 23:25–31

    Article  Google Scholar 

  26. Sahu P, Eniyarppu S, Ahmed M, Sharma D, Sakthivel A (2017) J Porous Mat 25:999–1005

    Article  Google Scholar 

  27. Laha SC, Mukherjee P, Sainkar SR, Kumar R (2002) J Catal 207:213–223

    Article  CAS  Google Scholar 

  28. Dehghani S, Haghighi M (2019) Waste Manag 95:584–592

    Article  PubMed  CAS  Google Scholar 

  29. Alibeik MA, Pouriayevali M (2012) Catal Commun 22:13–18

    Article  Google Scholar 

  30. Bing J, Li L, Lan B, Liao G, Zeng J, Zhang Q, Li X (2012) Appl Catal B Environ 115–116:16–24

    Article  Google Scholar 

  31. Portela R, Canela MC, Sanchez B, Marques FC, Stumbo AM, Tessinari RF, Coronado JM, Suarez S (2008) Appl Catal B Environ 84:643–650

    Article  CAS  Google Scholar 

  32. Ying Z, Li ZH, Yong Z, Shen XN, Lin LX (2006) Mater Lett 60:3221–3223

    Article  CAS  Google Scholar 

  33. Carvalho WA, Varaldo PB, Wallau M, Schuchardt U (1997) Zeolites 18:408–416

    Article  CAS  Google Scholar 

  34. Yang G, Xu Y, Su X, Xie Y, Yang C, Dong Z, Wang J (2014) Ceram Int 40:3969–3973

    Article  CAS  Google Scholar 

  35. Ma L, Ji J, Yu F, Ai N, Jiang H (2013) Microporous Mesoporous Mat 16:6–13

    Article  Google Scholar 

  36. Zhang X, Yang Y, Song L, Wang Y, He C, Wang Z, Cui L (2018) Mol Catal 447:80–89

    Article  CAS  Google Scholar 

  37. Mandi U, Kundu SK, Salam N, Bhaumik A, Islam SM (2016) J Colloid Interface Sci 467:291–299

    Article  PubMed  CAS  Google Scholar 

  38. Chen H, Liu Y, Zhao G (2011) Electron Mater Lett 7:151–154

    Article  CAS  Google Scholar 

  39. Pan W-G, Zhou Y, Guo R-T, Jin Q, Ding C-G, Guo S-Y (2013) Asian J Chem 25:9079–9082

    Article  CAS  Google Scholar 

  40. Wang N, Chu W, Zhang T, Zhao XS (2012) Int J Hydrogen Energy 37:19–30

    Article  Google Scholar 

  41. Shi C, Cheng M, Qu Z, Bao X (2005) J Mol Catal A Chem 235:35–43

    Article  CAS  Google Scholar 

  42. Renuka NK, Praveen AK, Aniz CU (2013) Microporous Mesoporous Mat 169:35–41

    Article  CAS  Google Scholar 

  43. Vargas OAG, Heredia JADR, Toriello VAS, Rangel RH, Wang JA, Chen LF (2018) J Mater Sci Mater Electron 29:15621–15631

    Article  Google Scholar 

  44. Police AKR, Basavaraju S, Valluri D, Machiraju S (2015) Bull Mat Sci 38:234

    Google Scholar 

  45. Encina ER, Coronado EA (2011) J Phys Chem C 115:15908–15914

    Article  CAS  Google Scholar 

  46. Wu Z, Li M, Howe J, Meyer HM, Overbury SH (2010) Langmuir 26:16595–16606

    Article  PubMed  CAS  Google Scholar 

  47. Li H-F, Zhang N, Chen P, Luo M-F, Lu J-Q (2011) Appl Catal B Environ 110:279–285

    Article  CAS  Google Scholar 

  48. Katta L, Sudarsanam P, Thrimurthulu G, Reddy BM (2010) Appl Catal B Environ 101:101–108

    Article  CAS  Google Scholar 

  49. Spanier JE, Robinson RD, Zhang F, Chan SW, Herman IP (2001) Phys Rev B 64(24):245407

    Article  Google Scholar 

  50. Wang Y, Yang Y, Liu N, Wang Y, Zhang X (2018) RSC Adv 8:33096–33102

    Article  CAS  Google Scholar 

  51. Wang L, Yin G, Yang Y, Zhang X, Kinetics R (2019) React Kinet Mech Catal 128:193–204

    Article  CAS  Google Scholar 

  52. Hu F, Chen J, Peng Y, Song H, Li K, Li J (2018) Chem Eng J 331:425–434

    Article  CAS  Google Scholar 

  53. Shen WJ, Tang XF, Chen JL, Li YG, Li Y, Xu YD (2006) Chem Eng J 118:119–125

    Article  Google Scholar 

  54. Zheng Y, Li K, Wang H, Wang Y, Tian D, Wei Y, Zhu X, Zeng C, Luo Y (2016) J Catal 344:365–377

    Article  CAS  Google Scholar 

  55. Zhang Z, Shi H, Wu Q, Bu X, Yang Y, Zhang J (2019) Mater Lett 242:20–23

    Article  CAS  Google Scholar 

  56. Liu S, Wu X, Liu W, Chen W, Ran R, Li M, Weng D (2016) J Catal 337:188–198

    Article  CAS  Google Scholar 

  57. Zhang X, Wang Y, Hou F, Li H, Yang Y, Zhang X, Yang Y, Wang Y (2017) Appl Surf Sci 391:476–483

    Article  CAS  Google Scholar 

  58. Weaver JF, Hoflund GB (1994) J Phys Chem 98:8519–8524

    Article  CAS  Google Scholar 

  59. Xie S, Liu Y, Deng J, Zhao X, Yang J, Zhang K, Han Z, Dai H (2016) J Catal 342:17–26

    Article  CAS  Google Scholar 

  60. Chen Z, Wang L, Xu H, Wen Q (2020) Chem Eng J 389:124345

    Article  CAS  Google Scholar 

  61. Wei Y, Liu J, Zhao Z, Chen Y, Xu C, Duan A, Jiang G, He H (2011) Angew Chem Int Ed Engl 50:2326–2329

    Article  PubMed  CAS  Google Scholar 

  62. Wang Y, Yu L, Wang R, Wang Y, Zhang X (2020) J Colloid Interface Sci 564:392–405

    Article  PubMed  CAS  Google Scholar 

  63. Hu Y, Lü W, Liu D, Liu J, Shi L, Sun Q (2009) J NAT GAS Chem 18:445–448

    Article  CAS  Google Scholar 

  64. Ma L, Seo CY, Chen X, Li J, Schwank JW (2018) Chem Eng J 350:419–428

    Article  CAS  Google Scholar 

  65. Liu B, Li C, Zhang Y, Liu Y, Hu W, Wang Q (2012) Appl Catal B Environ 111–112:467–475

    Article  Google Scholar 

  66. Yang S, Liu D, LiuTop S (2008) Catal 47:101–108

    CAS  Google Scholar 

  67. Perala V, Devaiah D, Deshetti J, Deboshree M, Muga V, Benjaram R (2019) Catal Lett 150:948–962

    Google Scholar 

  68. Dai Q, Bai S, Wang Z, Wang X, Lu G (2012) Appl Catal B Environ 126:64–75

    Article  CAS  Google Scholar 

  69. Yamazaki K, Kayama T, Dong F, Shinjoh H (2011) J Catal 282:289–298

    Article  CAS  Google Scholar 

  70. Machida M, Murata Y, Kishikawa K, Zhang D, Ikeue K (2008) Chem Mat 20:4489–4494

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Fund for Colleges and Universities in Jiangsu Province, China (20KJB610013), National Nature Science Foundation of China (NO.21507109, NO.51909230), The China Postdoctoral Science Foundation funded project (Grant No. 2019 M661948). The study was supported by Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering, MOE (KLIEEE-17-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 601 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Shen, H., Zhang, Y. et al. HCHO Catalytic Oxidation Performance over Cerium Containing MCM-41 Type Mesoporous Materials Supported Ag Catalysts. Catal Lett 152, 187–198 (2022). https://doi.org/10.1007/s10562-021-03611-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03611-x

Keywords

Navigation