Skip to main content
Log in

Effective and Stable Zeolite Imidazole Framework-Supported Copper Nanoparticles (Cu/ZIF-8) for Glycerol to Lactic Acid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The dehydrogenation and isomerization of glycerol to produce lactic acid is an important way to realize the effective utilization of biodiesel by-products. Currently, precious metal catalysts have been widely used in the preparation of lactic acid from glycerol. In this paper, Cu-supported zeolitic imidazolate framework (ZIF-8) crystals of different loadings were synthesized by the reaction of zinc nitrate, copper nitrate and 2-aminobenzophenone at room temperature, and were applied to the reaction of glycerol to lactic acid. Characterizations including XRD, XPS, SEM, TEM, BET, FT-IR, UV–vis DRS, CO2-TPD and TG were carried out to evaluate the morphology and properties of the catalysts. The results showed that the lattice structure of body centered cubic of the materials was successfully formed, and nano-copper was distributed uniformly on the supports, which provided abundant active alkaline sites. In addition, the catalytic reactions achieved good results under optimum copper loading and reaction conditions, which the glycerol conversion and lactic acid yield can reach 97.5% and 84.2%, respectively.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nakagawa Y, Tomishige K (2011) Catal Sci Technol 1:179–190

    Article  CAS  Google Scholar 

  2. Komanoya T, Suzuki A, Nakajima K, Kitano M, Kamata K, Hara M (2016) ChemCatChem 8:1094–1099

    Article  CAS  Google Scholar 

  3. Paul S, Pradhan K, Das AR (2016) Current Green Chemistry 3:111–118

    Article  CAS  Google Scholar 

  4. Soh L, Eckelman MJ (2016) ACS Sustainable Chemistry & Engineering 4:5821–5837

    Article  CAS  Google Scholar 

  5. Agrawal AK, Bhalla R (2003) Journal of Macromolecular Science-Polymer Reviews C43:479–503

    Article  CAS  Google Scholar 

  6. Serra T, Mateos-Timoneda MA, Planell JA, Navarro M (2013) Organogenesis 9:239–244

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alexander A (2013) Ajazuddin, Khan J, Saraf S, Saraf S. J Controlled Release 172:715–729

    Article  CAS  Google Scholar 

  8. Al-Mubarak L, Al-Haddab M (2013) J Cutan Aesthet Surg 6:178–188

    Article  PubMed  PubMed Central  Google Scholar 

  9. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Biotechnol Adv 31:877–902

    Article  PubMed  CAS  Google Scholar 

  10. Hwang HJ, Kim SM, Chang JH, Lee SB (2012) J Appl Phycol 24:935–940

    Article  CAS  Google Scholar 

  11. Pang X, Zhuang X, Tang Z, Chen X (2010) Biotechnol J 5:1125–1136

    Article  PubMed  CAS  Google Scholar 

  12. Vijayakumar J, Aravindan R, Viruthagiri T (2008) Chem Biochem Eng Q 22:245–264

    CAS  Google Scholar 

  13. Ftouni J, Villandier N, Auneau F, Besson M, Djakovitch L, Pinel C (2015) Catal Today 257:267–273

    Article  CAS  Google Scholar 

  14. Oh H, Wee YJ, Yun JS, Han SH, Jung SW, Ryu HW (2005) Bioresour Technol 96:1492–1498

    Article  PubMed  CAS  Google Scholar 

  15. Robertson NC, Schoenbrunn EF (1958) US2847464

  16. Sato E, c/o Mitsubishi Rayon Co., Ltd., Ozaki E, C/O Central Laboratories, Iida C, C/O Central Laboratories, Kobayashi Y, c/o Mitsubishi Rayon Co. Ltd, Sakimae A, C/O Central Lab. (2000) EP0654533

  17. Matsuda K, Kawano T, Horie H (2005) US20050119448

  18. Bicker M, Endres S, Ott L, Vogel H (2005) J Mol Catal A: Chem 239:151–157

    Article  CAS  Google Scholar 

  19. Kishida H, Jin FM, Zhou ZY, Moriya T, Enomoto H (2005) Chem Lett 34:1560–1561

    Article  CAS  Google Scholar 

  20. Shimanouchi T, Ueno S, Shidahara K, Kimura Y (2014) Chem Lett 43:535–537

    Article  CAS  Google Scholar 

  21. Zhang C, Wang T, Liu X, Ding Y (2016) Chin J Catal 37:502–509

    Article  CAS  Google Scholar 

  22. Lakshmanan P, Upare PP, Ngoc-Thuc L et al (2013) Applied Catalysis a-General 468:260–268

    Article  CAS  Google Scholar 

  23. Arcanjo MRA, Silva IJ Jr, Rodriguez-Castellon E, Infantes-Molina A, Vieira RS (2017) Catal Today 279:317–326

    Article  CAS  Google Scholar 

  24. Cho HJ, Chang C-C, Fan W (2014) Green Chem 16:3428–3433

    Article  CAS  Google Scholar 

  25. Shen Y, Zhang S, Li H, Ren Y, Liu H (2010) Chemistry (Easton) 16:7368–7371

    CAS  Google Scholar 

  26. Purushothaman RKP, van Haveren J, van Es DS et al (2014) Appl Catal B 147:92–100

    Article  CAS  Google Scholar 

  27. Xu J, Zhang H, Zhao Y et al (2013) Green Chem 15:1520–1525

    Article  CAS  Google Scholar 

  28. Purushothaman RKP, van Haveren J, van Es DS, Melian-Cabrera I, Meeldijk JD, Heeres HJ (2014) Applied Catalysis B-Environmental 147:92–100

    Article  CAS  Google Scholar 

  29. Redina EA, Kirichenko OA, Greish AA et al (2015) Catal Today 246:216–231

    Article  CAS  Google Scholar 

  30. Shih ZY, Periasamy AP, Hsu PC, Chang HT (2013) Applied Catalysis B-Environmental 132:363–369

    Article  Google Scholar 

  31. Zhang P, Song T, Wang T, Zeng H (2018) Applied Catalysis B-Environmental 225:172–179

    Article  CAS  Google Scholar 

  32. Mosleh S, Rahimi MR, Ghaedi M, Dashtian K, Hajati S (2018) Ultrason Sonochem 40:601–610

    Article  PubMed  CAS  Google Scholar 

  33. Tavanarad M, Meshkani F, Rezaei M (2018) Catal Lett 148:164–172

    Article  CAS  Google Scholar 

  34. Zheng H, Syengren H, Huang Z, Yang Z, Zou X, Johnsson M (2018) Microporous Mesoporous Mater 264:147–150

    Article  CAS  Google Scholar 

  35. Van Hoa H, Tran Duy T, Nguyen Dinh C, Hui D, Kim NH, Lee JH (2018) Composites Part B-Engineering 143:96–104

    Article  Google Scholar 

  36. Zaera F (2013) Chem Soc Rev 42:2746–2762

    Article  PubMed  CAS  Google Scholar 

  37. Hussain N, Gogoi P, Azhaganand VK, Shelke MV, Das MR (2015) Catal Sci Technol 5:1251–1260

    Article  CAS  Google Scholar 

  38. Gawande MB, Goswami A, Felpin FX et al (2016) Chem Rev 116:3722–3811

    Article  PubMed  CAS  Google Scholar 

  39. Hou X, Qing S, Liu Y et al (2016) Catal Sci Technol 6:6311–6319

    Article  CAS  Google Scholar 

  40. Anis SF, Khalil A (2016) Saepurahman, Singaravel G, Hashaikeh R. Microporous Mesoporous Mater 236:176–192

    Article  CAS  Google Scholar 

  41. Sun Y, Li Y, Tan J-C (2018) PCCP 20:10108–10113

    Article  PubMed  CAS  Google Scholar 

  42. Panchariya DK, Rai RK, Kumar EA, Singh SK (2018) ACS Omega 3:167–175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Xu SQ, Pan DH, Xiao GM (2019) Journal of Central South University 26:2974–2986

    Article  CAS  Google Scholar 

  44. Li B, Ma JG, Cheng P (2018) Angewandte Chemie-International Edition 57:6834–6837

    Article  PubMed  CAS  Google Scholar 

  45. Fang L, Wang W, Liu Y, Xie Z, Chen L (2017) DTr 46:8933–8937

    CAS  Google Scholar 

  46. Guo YF, Fang WJ, Fu JR et al (2018) Appl Surf Sci 435:149–155

    Article  CAS  Google Scholar 

  47. Whitford CL, Stephenson CJ, Gomez-Gualdron DA et al (2017) J Phys Chem C 121:25079–25091

    Article  CAS  Google Scholar 

  48. Dai H, Xia B, Wen L et al (2015) Applied Catalysis B-Environmental 165:57–62

    Article  CAS  Google Scholar 

  49. Jiang H-L, Akita T, Ishida T, Haruta M, Xu Q (2011) J Am Chem Soc 133:1304–1306

    Article  PubMed  CAS  Google Scholar 

  50. Lin L, Zhang T, Liu H, Qiu J, Zhang X (2015) Nanoscale 7:7615–7623

    Article  PubMed  CAS  Google Scholar 

  51. Yin H, Kim H, Choi J, Yip ACK (2015) Chem Eng J 278:293–300

    Article  CAS  Google Scholar 

  52. Choi M, Cho HS, Srivastava R, Venkatesan C, Choi D-H, Ryoo R (2006) Nat Mater 5:718–723

    Article  PubMed  CAS  Google Scholar 

  53. Battistoni C, Mattogno G, Paparazzo E, Naldini L (1985) Inorg Chim Acta 102:1–3

    Article  CAS  Google Scholar 

  54. Mansour AN (1994) Surf Sci Spectra 3:202–210

    Article  CAS  Google Scholar 

  55. Schejn A, Balan L, Falk V, Aranda L, Medjahdi G, Schneider R (2014) CrystEngComm 16:4493–4500

    Article  CAS  Google Scholar 

  56. Santacesaria E, Carotenuto G, Tesser R, Di Serio M (2012) Chem Eng J 179:209–220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key R&D Program of China (No. 2019YFB1504003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guomin Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 3149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, K., Shu, Y., Zhang, J. et al. Effective and Stable Zeolite Imidazole Framework-Supported Copper Nanoparticles (Cu/ZIF-8) for Glycerol to Lactic Acid. Catal Lett 152, 172–186 (2022). https://doi.org/10.1007/s10562-021-03610-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03610-y

Keywords

Navigation