Skip to main content

Advertisement

Log in

Boosting the Catalytic Performance by Confining Rich Carbon Atoms over Graphite Carbon Nitride Structure

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, the porous ultrathin graphitic carbon nitride (CN) nanosheets with rich C and nitrogen defects were prepared by one-step calcining the mixture of melamine and glucose (Glu) in air atmosphere (Glu-CN). Introducing simultaneously rich C atoms and nitrogen defects into CN structures continuously modulates the bandgaps from 2.67 to 1.81 eV of CN photocatalysts. Due to large surface area, more active sites, remarkably longer lifetime of charge carriers and adjustable band gap structure, the prepared ultrathin porous CN nanosheets show the enhanced photocatalytic performance for the degradation of methyl orange (MO) under visible light. The degradation efficiency of optimal CN nanosheet photocatalyst for MO is 5.75 times that of bulk CN. This work provides a facile and universal relevance approach to engineer the band structures of CN by introduction of rich C and porous morphology for high-performance photocatalytic, which can provide informative principles for the design of efficient photocatalysis systems for solar energy conversion.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2

Similar content being viewed by others

References

  1. Feng C, Tang L, Deng Y, Wang J, Luo J, Liu Y, Ouyang X, Yang H, Yu J, Wang J (2020) Synthesis of leaf-vein-like g-C3N4 with tumble band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv Funct Mater 30(39):1–13

    Article  Google Scholar 

  2. Liang Q, Li Z, Huang ZH, Kang F, Yang QH (2015) Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv Funct Mater 25(44):6885–6892

    Article  CAS  Google Scholar 

  3. Li Y, Yang M, Xing Y, Liu X, Yang Y, Wang X, Song S (2017) Preparation of carbon-rich g-C3N4 nanosheets with enhanced visible light utilization for efficient photocatalytic hydrogen production. Small 13(33):1–8

    Article  Google Scholar 

  4. Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43(22):7787–7812

    Article  CAS  PubMed  Google Scholar 

  5. Qu Y, Duan X (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42(7):2568–2580

    Article  CAS  PubMed  Google Scholar 

  6. Jinshui Z, Wang Bo WX (2014) Carbon nitride polymeric semiconductor for photocatalysis. Prog Chem 26(1):19–29

    Google Scholar 

  7. Jun YS, Lee EZ, Wang X, Hong WH, Stucky GD, Thomas A (2013) From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv Funct Mater 23(29):3661–3667

    Article  CAS  Google Scholar 

  8. Wan G, Fu Y, Guo J, Xiang Z (2015) Photoelectronic porous covalent organic materials: research progress and perspective. Acta Chim Sinica 73(6):557–578

    Article  CAS  Google Scholar 

  9. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278

    Article  CAS  PubMed  Google Scholar 

  10. Mishra A, Mehta A, Basu S, Shetti NP, Reddy KR, Aminabhavi TM (2019) Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: a review. Carbon 149:693–721

    Article  CAS  Google Scholar 

  11. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1(18):2655–2661

    Article  CAS  Google Scholar 

  12. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  13. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93(1):341–357

    Article  CAS  Google Scholar 

  14. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photo catalytic hydrogen generation. Chem Rev 110(11):6503–6570

    Article  CAS  PubMed  Google Scholar 

  15. Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20(1):35–54

    Article  CAS  Google Scholar 

  16. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Z, Sun Y, Dong F (2015) Graphitic carbon nitride based nano composites: a review. Nanoscale 7(1):15–37

    Article  CAS  PubMed  Google Scholar 

  18. Iqbal W, Qiu B, Zhu Q, Xing M, Zhang J (2018) Self-modified breaking hydrogen bonds to highly crystalline graphitic carbon nitrides nanosheets for drastically enhanced hydrogen production. Appl Catal B-Environ 232(3):306–313

    Article  CAS  Google Scholar 

  19. Cheng L, Zhang H, Li X, Fan J, Xiang Q (2021) Carbon-graphitic carbon Nitride hybrids for heterogeneous photocatalysis. Small 17(1):1–22

    Article  Google Scholar 

  20. Adekoya D, Zhang S, Hankel M (2021) Boosting reversible lithium storage in two-dimensional C3N4 by achieving suitable adsorption energy via Si doping. Carbon 176:480–487

    Article  CAS  Google Scholar 

  21. He L, Zhang XQ, Lu AH (2017) Two-dimensional carbon-based porous materials: synthesis and applications. Acta Phys-Chim Sin 33(4):709–728

    Article  CAS  Google Scholar 

  22. Wang Y, Silveri F, Bayazit MK, Ruan Q, Li Y, Xie J, Catlow CRA, Tang J (2018) Bandgap engineering of organic semiconductors for highly efficient photocatalytic water splitting. Adv Energy Mater 8(24):1–10

    Google Scholar 

  23. Zhao D, Dong CL, Wang B, Chen C, Huang YC, Diao Z, Li S, Guo L, Shen S (2019) Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv Mater 31(43):1–10

    Article  Google Scholar 

  24. Zhang J, Chen J, Wan Y, Liu H, Chen W, Wang G, Wang R (2020) Defect engineering in atomic-layered graphitic carbon nitride for greatly extended visible-light photocatalytic hydrogen evolution. ACS Appl Mater Interfaces 12(12):13805–13812

    Article  CAS  PubMed  Google Scholar 

  25. Zhu D, Zhou Q (2021) Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light. Appl Catal B-Environ 281(1):119474

    Article  CAS  Google Scholar 

  26. Deng P, Xiong J, Lei S, Wang W, Ou X, Xu Y, Xiao Y, Cheng B (2019) Nickel for mate induced high-level: in situ Ni-doping of g-C3N4 for a tunable band structure and enhanced photocatalytic performance. J Mater Chem A 7(39):22385–22397

    Article  CAS  Google Scholar 

  27. Liu J, Yu Y, Qi R, Cao C, Liu X, Zheng Y, Song W (2019) Enhanced electron separation on in-plane benzene-ring doped g-C3N4 nanosheets for visible light photocatalytic hydrogen evolution. Appl Catal B-Environ 244:459–464

    Article  CAS  Google Scholar 

  28. Che H, Liu C, Che G, Liao G, Dong H, Li C, Song N, Li C (2020) Facile construction of porous intramolecular g-C3N4-based donor-acceptor conjugated copolymers as highly efficient photocatalysts for superior H2 evolution. Nano Energy 67:104273

    Article  CAS  Google Scholar 

  29. Dong G, Zhao K, Zhang L (2012) Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem Comm 48(49):6178–6180

    Article  CAS  PubMed  Google Scholar 

  30. Li B, Zhao Z, Gao F, Wang X, Qiu J (2014) Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed 001 facets for improved visible light photocatalytic activity. Appl Catal B-Environ 147(5):958–964

    Article  CAS  Google Scholar 

  31. Chuang PK, Wu KH, Yeh TF, Teng H (2016) Extending the π-conjugation of g-C3N4 by incorporating aromatic carbon for photocatalytic H2 evolution from aqueous solution. ACS Sustain Chem Eng 4(11):5989–5997

    Article  CAS  Google Scholar 

  32. Tang L, Ouyang X, Peng B, Zeng G, Zhu Y, Yu J, Feng C, Fang S, Zhu X, Tan J (2019) Highly sensitive detection of microcystin-LR under visible light using a self-powered photoelectrochemical aptasensor based on a CoO/Au/g-C3N4 Z-scheme heterojunction. Nanoscale 11(25):12198–12209

    Article  CAS  PubMed  Google Scholar 

  33. Xie Y, Li Y, Huang Z, Zhang J, Jia X, Wang XS, Ye J (2020) Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution. Appl Catal B-Environ 265(10):118581

    Article  CAS  Google Scholar 

  34. Fu Y, Li C, Zhang M, Zhu C, Li H, Wang H, Song Y, Huang H, Liu Y, Kang Z (2018) Photocatalytic H2O2 and H2 generation from living Chlorella vulgaris and carbon micro particle commodified g-C3N4. Adv Ener Mater 8(34):1–9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University Natural Science Research Project of Anhui (KJ2020A0472, KJ2015JD13), Natural Science Foundation of Anhui Province (1908085QB73), Open Foundation of State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences (2019OFP08), National Science Fund for Distinguished Young Scholars (41925031), Natural Science Foundation of China (41673131, 21777001), and Anhui Provincial Natural Science Research Project (KJ2015JD13, KJ2018A0515, KJ2019A0773). Anhui Provincial Natural Science Research Project (KJ2017JD12)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiufang Wang or Xiaoli Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Gao, K., Tang, Z. et al. Boosting the Catalytic Performance by Confining Rich Carbon Atoms over Graphite Carbon Nitride Structure. Catal Lett 151, 3721–3732 (2021). https://doi.org/10.1007/s10562-021-03608-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03608-6

Keywords

Navigation