Skip to main content
Log in

Synthesis and Characterization of Nano-Sized Pt/HZSM–5 Catalyst for Application in the Xylene Isomerization Process

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The xylene isomerization is a well-established process in the aromatic-based petrochemical complex. This process aims to convert ethylbenzene (EB), meta- and ortho-xylene to para-xylene (PX). Active metal such as platinum (Pt) on the zeolite support is a commonly used catalyst for isomerization reactions. Different catalysts with different acidic strength of zeolite (Si/Al ratios = 32, 50, and 150) are synthesized in this study. The physical and chemical properties of the synthesized catalysts are characterized using X-ray diffraction (XRD), inductively coupled plasma (ICP), and Brunauer, Emmett, and Teller (BET) surface area analyses. Then, the effect of catalyst types and operating parameters such as temperature (370, 375, 380, and 385 °C), hydrogen partial pressure (2.4, 2.6, 2.8, and 3.0), and weight hourly space velocity (3.2, 3.4, 3.8 and 4.1 h−1) investigated on the xylene isomerization process. Indeed, the variation of EB conversion, xylene loss, and the ratio of PX produced to the PX in equilibrium condition (PXATE) by these influential factors is experimentally monitored in a laboratory-scale xylene isomerization reactor. Results show that the catalyst with a small Si/Al ratio of 32 has higher acidic strength and provides the best isomerization performance. Moreover, the temperatures of 375 °C, hydrogen partial pressure (H2/hydrocarbon) of 2.6, and weight hourly space velocity (WHSV) of 3.5 h−1 are the optimum operating conditions for the xylene isomerization process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guisnet M, Gnep NS, Morin S (2000) Microporous Mesoporous Mater 35:47

    Google Scholar 

  2. Farahani SH, Alavi SM, Falamaki C (2017) RSC Adv 7:34012

    CAS  Google Scholar 

  3. Ghanbari Pakdehi S, Vaferi B (2016) Desalin Water Treat 57:18286

    CAS  Google Scholar 

  4. Liu Y, Hu B, Wu S, Wang M, Zhang Z, Cui B, He L, Du M (2019) Appl Catal B Environ 258:117970

    CAS  Google Scholar 

  5. Xu Y, Liu J, Ma G, Wang J, Lin J, Wang H, Zhang C, Ding M (2018) Fuel 228:1

    Google Scholar 

  6. Silva JM, Ribeiro MF, Ribeiro FR, Benazzi E, Guisnet M (1995) Appl Catal A Gen 125:15

    CAS  Google Scholar 

  7. Abichandani JS, Beck JS, Bundens RG, Breckenridge LL, Stern DL, Venkat CR, (1998)

  8. Deshayes AL, Miró EE, Horowitz GI (2006) Chem Eng J 122:149

    CAS  Google Scholar 

  9. Hamedi N, Iranshahi D, Rahimpour MR, Raeissi S, Rajaei H (2015) J Taiwan Inst Chem Eng 48:56

    CAS  Google Scholar 

  10. Chen S, Hassanzadeh-Aghdam MK, Ansari R (2018) J Alloys Compd 767:632

    CAS  Google Scholar 

  11. Zhang Y, Xu C, Chen P, Nahas Y, Prokhorenko S, Bellaiche L (2020) Phys Rev B 102:241107

    CAS  Google Scholar 

  12. Jia L, Liu B, Zhao Y, Chen W, Mou D, Fu J, Wang Y, Xin W, Zhao L (2020) J Mater Sci 55:16197

    CAS  Google Scholar 

  13. Wang P, Zhang X, Duan W, Teng W, Liu Y, Xie Q (2020). Chinese J Chem. https://doi.org/10.1002/cjoc.202000543

    Article  Google Scholar 

  14. Shen C, Lou Q, Zang J, Liu K, Qu S, Dong L, Shan C (2020) Adv Sci 7:1903525

    CAS  Google Scholar 

  15. Wang M, Hu M, Hu B, Guo C, Song Y, Jia Q, He L, Zhang Z, Fang S (2019) Biosens Bioelectron 135:22

    PubMed  CAS  Google Scholar 

  16. Wang M, Yang L, Hu B, Liu J, He L, Jia Q, Song Y, Zhang Z (2018) Biosens Bioelectron 113:16

    PubMed  CAS  Google Scholar 

  17. Song Y, Xu M, Li Z, He L, Hu M, He L, Zhang Z, Du M (2020) Sensors Actuators B Chem 321:128527

    CAS  Google Scholar 

  18. Wang P, Yao T, Li Z, Wei W, Xie Q, Duan W, Han H (2020) Compos Sci Technol 198:108307

    CAS  Google Scholar 

  19. Shi M, Wang B, Shen Y, Jiang J, Zhu W, Su Y, Narayanasamy M, Angaiah S, Yan C, Peng Q (2020) Chem Eng J 399:125627

    CAS  Google Scholar 

  20. Jia Q, Huang S, Hu M, Song Y, Wang M, Zhang Z, He L (2020) Sensors Actuators B Chem 323:128647

    CAS  Google Scholar 

  21. Liu H, Liu X, Zhao F, Liu Y, Liu L, Wang L, Geng C, Huang P (2020) J Colloid Interface Sci 562:182

    PubMed  CAS  Google Scholar 

  22. Komeilibirjandi A, Raffiee AH, Maleki A, Nazari MA, Shadloo MS (2019) J Therm Anal Calorim 139(4):2679–2689

    Google Scholar 

  23. Karimipour A, D’Orazio A, Shadloo MS (2017) Phys E Low Dimens Syst Nanostructures 86:146

    CAS  Google Scholar 

  24. Shadloo MS (2020) Int J Numer Methods Heat Fluid Flow

  25. Xu P, Lu W, Zhang J, Zhang L, Sustain ACS (2020) Chem Eng 8:12366

    CAS  Google Scholar 

  26. Li X, Zhang R, Zhang X, Zhu P, Yao T (2020) Chem Asian J 15:1175

    PubMed  CAS  Google Scholar 

  27. Wang X, Wang J, Sun X, Wei S, Cui L, Yang W, Liu J (2018) Nano Res 11:988

    CAS  Google Scholar 

  28. Lei Z, Hao S, Yang J, Zhang L, Fang B, Wei K, Lingbo Q, Jin S, Wei C (2020) Chemosphere 15:128646

    Google Scholar 

  29. Liu Y, Zhang Q, Xu M, Yuan H, Chen Y, Zhang J, Luo K, Zhang J, You B (2019) Appl Surf Sci 476:632

    CAS  Google Scholar 

  30. Liu J, Wang C, Sun H, Wang H, Rong F, He L, Lou Y, Zhang S, Zhang Z, Du M (2020) Appl Catal B Environ 279:119407

    CAS  Google Scholar 

  31. Minceva M, Rodrigues AE (2004) Chem Eng Res Des 82:667

    CAS  Google Scholar 

  32. Kouva S, Kanervo J, Schüβler F, Olindo R, Lercher JA, Krause O (2013) Chem Eng Sci 89:40

    CAS  Google Scholar 

  33. Costa C, Dzikh IP, Lopes JM, Lemos F, Ribeiro FR (2000) J Mol Catal A Chem 154:193

    CAS  Google Scholar 

  34. Xu M, Li T, Wang Z, Deng X, Yang R, Guan Z (2018) IEEE Trans Image Process 27:5044

    Google Scholar 

  35. Beschmann K, Riekert L (1993) J Catal 141:548

    CAS  Google Scholar 

  36. Young LB, Butter SA, Kaeding WW (1982) J Catal 76:418

    CAS  Google Scholar 

  37. Zheng S, Jentys A, Lercher JA (2006) J Catal 241:304

    CAS  Google Scholar 

  38. Rasouli M, Yaghobi N (2018) Catal Lett 148:2325

    CAS  Google Scholar 

  39. Jarvis J, He P, Wang A, Song H (2019) Fuel 236:1301

    CAS  Google Scholar 

  40. Chang R, Zhu L, Jin F, Fan M, Liu J, Jia Q, Tang C, Li Q (2018) J Chem Technol Biotechnol 93:3292

    CAS  Google Scholar 

  41. Dondur V, Rakić V, Damjanović L, Hercigonja R, Auroux A (2006) J Therm Anal Calorim 84:233

    CAS  Google Scholar 

  42. Abdi-khanghah M, Alrashed AAAA, Hamoule T, Behbahani RM, Goodarzi M (2019) J Therm Anal Calorim 135:1723

    CAS  Google Scholar 

  43. Lei Z, Hao S, Yang J, Dan X (2020) Int J Hydrog Energy 45(38):19280–19290

    CAS  Google Scholar 

  44. Mihályi RM, Klébert S, Kollár M, Mavrodinova V (2014) J Porous Mater 21:485

    Google Scholar 

  45. Bauer F, Chen W-H, Ernst H, Huang S-J, Freyer A, Liu S-B (2004) Microporous Mesoporous Mater 72:81

    CAS  Google Scholar 

  46. Bhatia S, Chandra S, Das T (1989) Ind Eng Chem Res 28:1185

    CAS  Google Scholar 

  47. Wang X-F, Gao P, Liu Y-F, Li H-F, Lu F (2020) Curr Bioinform 15:493

    CAS  Google Scholar 

  48. He S, Guo F, Zou Q, Ding H (2020) Curr Bioinform 15:1

    CAS  Google Scholar 

  49. Hu J, Zheng B, Wang C, Zhao C, Hou X, Pan Q, Xu Z (2020) Front Inf Technol Electron Eng 21:675

    Google Scholar 

  50. Li T, Xu M, Zhu C, Yang R, Wang Z, Guan Z (2019) IEEE Trans Image Process 28:5663

    PubMed  Google Scholar 

  51. Yang J, Li S, Wang Z, Dong H, Wang J, Tang S (2020) Materials (Basel) 13:5755

    CAS  Google Scholar 

  52. Qian J, Feng S, Li Y, Tao T, Han J, Chen Q, Zuo C (2020) Opt Lett 45:1842

    PubMed  Google Scholar 

  53. Qian J, Feng S, Tao T, Hu Y, Li Y, Chen Q, Zuo C (2020) APL Photon 5:46105

    Google Scholar 

  54. Yue H, Wang H, Chen H, Cai K, Jin Y (2020) Mech Syst Signal Process 141:106690

    Google Scholar 

  55. Cao B, Dong W, Lv Z, Gu Y, Singh S, Kumar P (2020) IEEE Trans Fuzzy Syst 28:2702

    Google Scholar 

  56. Wu T, Cao J, Xiong L, Zhang H (2019). Complexity. https://doi.org/10.1155/2019/7875305

    Article  Google Scholar 

  57. Wang J, Zhu P, He B, Deng G, Zhang C, Huang X (2020) Int J Control Autom Syst 54(14):8547–8557

    Google Scholar 

  58. Liu S, Chan FTS, Ran W (2016) Expert Syst Appl 55:37

    Google Scholar 

  59. Liu S, Yu W, Chan FTS, Niu B (2021) Int J Intell Syst 36:1015

    Google Scholar 

  60. Chen H, Qiao H, Xu L, Feng Q, Cai K (2019) IEEE Trans Ind Inf. 15:5971

    Google Scholar 

  61. Zhang X, Wang Y, Chen X, Su C-Y, Li Z, Wang C, Peng Y (2018) IEEE Trans Syst Man Cybern Syst 49:2424

    Google Scholar 

  62. Zhang H, Qiu Z, Cao J, Abdel-Aty M, Xiong L (2019) IEEE Trans Neural Netw Learn Syst 31:4437

    Google Scholar 

  63. Mousavi AA, Zhang C, Masri SF, Gholipour G (2020) Sensors 20:1271

    PubMed Central  CAS  Google Scholar 

  64. Lv Z, Qiao L (2020) Appl Soft Comput 92:106300

    Google Scholar 

  65. Qiu T, Shi X, Wang J, Li Y, Qu S, Cheng Q, Cui T, Sui S (2019) Adv Sci 6:1900128

    Google Scholar 

  66. Vaferi B, Eslamloueyan R, Ayatollahi S (2015) Energy Sources Part A Recover Util Environ Eff 37:174

    Google Scholar 

  67. Alsaffar MA, Ghany MARA, Ali JM, Ayodele BV, Mustapa SI (2021) Top Catal 1:1–9

    Google Scholar 

  68. Mighani M, Shahi A, Antonioni G (2017) In 16th Int. Conf. Sustain. Energy Technol. Set 2017, Bol. Italy

  69. Abbasi MR, Shamiri A, Hussain MA, Aghay Kaboli SH (2019) J Chem Technol Biotechnol 94:2433

    CAS  Google Scholar 

  70. Long J, Li T, Yang M, Hu G, Zhong W (2018) Ind Eng Chem Res 58:247

    Google Scholar 

  71. Mencarelli L, Pagot A, Duchêne P (2020) Comput Chem Eng 135:106772

    CAS  Google Scholar 

  72. Rajaei H, Esmaeilzadeh F, Mowla D (2020) J Therm Anal Calorim 1:1–6

    Google Scholar 

  73. Jian Z, Zhicheng LIU, Liyuan LI, Yangdong W, Huanxin GAO, Weimin Y, Zaiku XIE, Yi T (2013) Chin J Catal 34:1429

    Google Scholar 

  74. Al-Khattaf S (2007) Ind Eng Chem Res 46:59

    CAS  Google Scholar 

  75. Aghdam NC, Ejtemaei M, Babaluo AA, Tavakoli A, Bayati B, Bayat Y (2016) Chem Eng J 305:2

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Shiraz University for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feridun Esmaeilzadeh.

Ethics declarations

Conflict of Interest

The authors declare no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajaei, H., Esmaeilzadeh, F. & Mowla, D. Synthesis and Characterization of Nano-Sized Pt/HZSM–5 Catalyst for Application in the Xylene Isomerization Process. Catal Lett 152, 139–150 (2022). https://doi.org/10.1007/s10562-021-03604-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03604-w

Keywords

Navigation