Skip to main content
Log in

Tri-Reforming of Methane over NdM0.25Ni0.75O3 (M = Cr, Fe) Catalysts and the Effect of CO2 Composition

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The NdM0.25Ni0.75O3 (M = Cr, Fe) named NCN and NFN catalysts precursors were synthesized and characterized. The CO2 utilization in the feed was studied in the methane tri-reforming to produce syngas at 850 °C. The catalysts presented orthorhombic structure and the elements (Nd, Cr or Fe, Ni and O) on the surface showed homogeneous dispersion. XPS indicates different states of nickel, iron and chromium, respectively, Ni2+, Fe3+ and Fe2+ and Cr3+ (or Cr4+) and Cr6+ species. The Tri-Reforming of Methane (TRM) was performed for conditions 1CH4:0.5CO2:0.5O2 (A) and 1CH4:1CO2:0.25O2 (B), both with 0.25 H2O diluted in He. The conversions of methane were 74% for the NCN and 65% for the NFN catalysts. Both catalysts showed ratios (H2/CO) of 1.5 and 2 for conditions A and B, respectively, at 850 °C.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Schmal M, Toniolo FS, Kozonoe CE (2018) Perspective of catalysts for (Tri) reforming of natural gas and flue gas rich in CO2. Appl Catal A General 568:23–42

    Article  CAS  Google Scholar 

  2. Sonal KKP, Upadhyayula S (2017) Synthesis of C5+ hydrocarbons from low H2/CO ratio syngas over silica supported bimetallic Fe-Co catalyst. Catal Today 291:133–145

    Article  CAS  Google Scholar 

  3. Zhao K, He F, Huang Z, Zheng A, Li H, Zhao Z (2014) La1-xSrxFeO3 perovskites as oxygen carriers for the partial oxidation of methane to syngas. Chinese J. Catal 35:1196–1205

    Article  CAS  Google Scholar 

  4. Gangadharan P, Kanchi KC, Lou HH (2012) Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane. Chem Eng Res Des 90:1956–1968

    Article  CAS  Google Scholar 

  5. Chein R-Y, Hsu W-H (2018) Thermodynamic analysis of syngas production via tri-reforming of methane and carbon gasification using flue gas from coal-fired power plants. J Clean Prod 200:242–258

    Article  CAS  Google Scholar 

  6. Solovev SA, Kurilets Y, Orlik SN (2012) Tri-reforming of methane on structured Ni-containing catalysts. Theor Exp Chem 48:199–205

    Article  CAS  Google Scholar 

  7. Díez-Ramírez J, Dorado F, Martínez-Valiente A, García-Vargas JM, Sánchez P (2016) Kinetic, energetic and exergetic approach to the methane tri-reforming process. Int J Hydrogen Energy 41:19339–19348

    Article  CAS  Google Scholar 

  8. Watanabe R, Tsujioka M, Fukuhara C (2016) Performance of Non-stoichiometric Perovskite Catalyst (AxCrO3-δ, A: La, Pr, Nd) for Dehydrogenation of Propane Under Steam Condition. Catal Letter 146:2458–2467

    Article  CAS  Google Scholar 

  9. Wang Y, Yao L, Wang Y, Wang S, Zhao Q, Mao D, Hu C (2018) Low-Temperature Catalytic CO2 Dry Reforming of Methane on Ni-Si/ZrO2. Catalyst ACS Catal 8:6495–6506

    Article  CAS  Google Scholar 

  10. Fedorova ZA, Danilova MM, Zaikovskii VI (2020) Porous nickel-based catalysts for trireforming of methane to synthesis gas: Catalytic activity. Mater Lett 261:127087

    Article  CAS  Google Scholar 

  11. Valderrama G, Kiennemann A, de Navarroc CU, Goldwasser MR (2018) LaNi1-xMnxO3 perovskite-type oxides as catalysts precursors for dry reforming of methane. Appl Catal A General 565:26–33

    Article  CAS  Google Scholar 

  12. Yu X, Zhang F, Chu W (2016) Effect of a second metal (Co, Cu, Mn or Zr) on nickel catalysts derived from hydrotalcites for the carbon dioxide reforming of methane. RSC Adv 6:70537–70546

    Article  CAS  Google Scholar 

  13. Pino L, Italiano C, Vita A, Laganà M, Recupero V (2017) Ce0.70La0.20Ni0.10O2-δ catalyst for methane dry reforming: Influence of reduction temperature on the catalytic activity and stability. Appl Catal B Environ 218:779–792

    Article  CAS  Google Scholar 

  14. Aliotta C, Liotta LF, Deganello F, La Parola V, Martorana A (2016) Direct methane oxidation on La1-xSrxCr1-yFeyO3-δ perovskite-type oxides as potential anode for intermediate temperature solid oxide fuel cells. Appl Catal B Environ 180:424–433

    Article  CAS  Google Scholar 

  15. Chen G, Tao J, Liu C, Yan B, Li W, Li X (2017) Hydrogen production via acetic acid steam reforming: A critical review on catalysts. Renew Sustain Energy Rev 79:1091–1098

    Article  CAS  Google Scholar 

  16. Chen M, Chen D, Chang M, Hu H, Xu Q (2017) New Insight into Hydrogen Oxidation Reaction on La0.3Sr0.7Fe0.7Cr0.3O3-δ Perovskite as a Solid Oxide Fuel Cell Anode. J. Electrochem. Soc. 164(4):F405–F411

    Article  CAS  Google Scholar 

  17. Kozuka H, Ohbayashi K, Koumoto K (2015) Electronic conduction in La-based perovskite-type oxides. Sci Technol Adv Mater 16(2):1–16

    Article  CAS  Google Scholar 

  18. Luo M, Yi Y, Wang S, Wang Z, Du M, Pan J, Wang Q (2018) Review of hydrogen production using chemical-looping technology. Renew Sustain Energy Rev 81:3186–3214

    Article  CAS  Google Scholar 

  19. Melchiori T, Di Felice L, Mota N, Navarro RM, Fierro JLG, van Sint Annaland M, Gallucci F (2014) Methane partial oxidation over a LaCr0.85Ru0.15O3 catalyst: Characterization, activity tests and kinetic modeling. Appl Catal A General 486:239–249

    Article  CAS  Google Scholar 

  20. Nalbandian L, Evdou A, Zaspalis V (2011) La1-xSrxMyFe1-yO3-δ perovskites as oxygen-carrier materials for chemical-looping reforming. Int J Hydrogen Energy 36:6657–6670

    Article  CAS  Google Scholar 

  21. Theofanidis S-A, Galvita V, Poelman H, Marin G (2015) Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe. ACS Catal 5(5):3028–3039

    Article  CAS  Google Scholar 

  22. Valderrama G, de Navarro CU, Goldwasser MR (2013) CO2 reforming of CH4 over Co-La-based perovskite-type catalyst precursors. J Power Sources 234:31–37

    Article  CAS  Google Scholar 

  23. Yadav PK, Das T (2019) Production of syngas from carbon dioxide reforming of methane by using LaNixFe1-xO3 perovskite type catalysts. Inter J Hydrogen Energy 44:1659–1670

    Article  CAS  Google Scholar 

  24. Zou X, Ma Z, Liu H, Chen D, Wang C, Zhang P, Chen T (2018) Green synthesis of Ni supported hematite catalysts for syngas production from catalytic cracking of toluene as a model compound of biomass tar. Fuel 217:343–351

    Article  CAS  Google Scholar 

  25. Dedov AG, Loktev AS, Komissarenko DA, Parkhomenko KV, Roger A-C, Shlyakhtin OA, Mazo GN, Moiseev II (2016) High-selectivity partial oxidation of methane into synthesis gas: the role of the red-ox transformations of rare earth - alkali earth cobaltate-based catalyst components. Fuel Process Technol 148:128–137

    Article  CAS  Google Scholar 

  26. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B 25:925–946

    Article  CAS  Google Scholar 

  27. de Roseno KTC, Schmal M, Brackmann R, Alves RMB, Giudici R (2019) Partial oxidation of methane on neodymium and lanthanium chromate based perovskites for hydrogen production. Inter. J. Hydrogen Energy 44:8166–8177

    Article  CAS  Google Scholar 

  28. Choudhary VR, Mondal KC (2006) CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst. Appl Energy 83:1024–1032

    Article  CAS  Google Scholar 

  29. Vijayakumar C, Kumar HP, Solomon S, Thomas JK, Warriar PRS, Koshy J (2008) Synthesis, characterization, sintering and dielectric properties of nanostructured perovskite type oxide, Ba2GdSbO6. Bull Mater Sci 31(5):719–722

    Article  CAS  Google Scholar 

  30. Galal A, Atta NF, Darwish SA, Abd El Fatah AA, Ali SM (2010) Electrocatalytic evolution of hydrogen on a novel SrPdO3 perovskite electrode. J Power Sources 195:3806–3809

    Article  CAS  Google Scholar 

  31. Ghosh S, Dasgupta S (2010) Synthesis, characterization and properties of nanocrystalline perovskite cathode materials. Mater. Sci.-Poland 28(2):427–438

    CAS  Google Scholar 

  32. Fjellvåg H, Hansteen OH, Tilset BG, Olafsen A, Sakai N, Seim H (1995) Thermal analysis as an aid in the synthesis of non-stoichiometric perovskite type oxides. Thermochim Acta 256(1):75–89

    Article  Google Scholar 

  33. Krupicka E, Reller A, Weidenkaff A (2002) Morphology of nanoscaled LaMO3-particles (M=Mn, Fe Co, Ni) derived by citrate precursors in aqueous and alcoholic solvents. Cryst Eng 5(3–4):195–202

    Article  CAS  Google Scholar 

  34. Lee DW, Won JH, Shim KB (2003) Low temperature synthesis of BaCeO3 nano powders by the citrate process. Mater Letter 57(22–23):3346–3351

    Article  CAS  Google Scholar 

  35. Popa M (2002) Synthesis of lanthanum cobaltite (LaCoO3) by the polymerizable complex route. Solid State Ionics 151(1–4):251–257

    Article  CAS  Google Scholar 

  36. Durán P, Capel F, Gutierrez D, Tartaj J, Bañares MA, Moure C (2001) Metal citrate polymerized complex thermal decomposition leading to the synthesis of BaTiO3: Effects of the precursor structure on the BaTiO3 formation mechanism. J Mater Chem 11(7):1828–1836

    Article  CAS  Google Scholar 

  37. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41(1–3):207–219

    Article  CAS  Google Scholar 

  38. Kim WY, Jang JS, Ra EC, Kim KY, Kim EH, Lee JS (2019) Reduced perovskite LaNiO3 catalysts modified with Co and Mn for low coke formation in dry reforming of methane. Appl Catal A General 575:198–203

    Article  CAS  Google Scholar 

  39. Alothman Z (2012) A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 5(12):2874–2902

    Article  CAS  PubMed Central  Google Scholar 

  40. Xiong J, Liu K, Liu X, Liang L, Zeng Q (2016) Molecular simulation of methane adsorption in slit-like quartz pores. RSC Adv 6(112):110808–110819

    Article  CAS  Google Scholar 

  41. Ang R, Sun YP, Zhu XB, Song WH (2008) Structural, magnetic, electrical and thermal transport properties in two-dimensional perovskite Sr1.05Ln0.95CoO4 (Ln = La, Ce and Nd) compounds. J. Phys. D Appl. Phys. 41(21):305402–305415

    Article  CAS  Google Scholar 

  42. Zhu Q, Cheng H, Zou X, Lu X, Xu Q, Zhou Z (2015) Synthesis, characterization, and catalytic performance of La0.6Sr0.4NixCo1-xO3 perovskite catalysts in dry reforming of coke oven gas. Chin J Catal 36(7):915–924

    Article  CAS  Google Scholar 

  43. Grieco EM, Gervasio C, Baldi G (2013) Lanthanum-chromium-nickel perovskites for the catalytic cracking of tar model compounds. Fuel 103:393–397

    Article  CAS  Google Scholar 

  44. Liu C, Li S, Chen D, Xiao Y, Li T, Wang W (2019) Hydrogen-rich syngas production by chemical looping steam reforming of acetic acid as bio-oil model compound over Fe-doped LaNiO3 oxygen carriers. Inter J Hydrogen Energy 44:17732–17741

    Article  CAS  Google Scholar 

  45. Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S (2012) CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M=Bi Co, Cr, Cu, Fe): roles of lattice oxygen on CeH activation and carbon suppression. Int J Hydrogen Energy 37:11195–11207

    Article  CAS  Google Scholar 

  46. Xiao S, Dong X, Yin S, Meng W, Ming L, Wang H (2016) Effects of Fe partial substitution of La2NiO4/LaNiO3 catalyst precursors prepared by wet impregnation method for the dry reforming of methane. Appl Catal A General 526:132–138

    Article  CAS  Google Scholar 

  47. Shen Y, Zhao K, He F, Li H (2019) The structure-reactivity relationships of using three-dimensionally ordered macroporous LaFe1-xNixO3 perovskites for chemical-looping steam methane reforming. J Energy Inst 92:239–246

    Article  CAS  Google Scholar 

  48. Li KZ, Wang H, Wei YG, Yan DX (2011) Transformation of methane into synthesis gas using the redox property of Ce-Fe mixed oxides: effect of calcination temperature. Int J Hydrogen Energy 36:3471–3482

    Article  CAS  Google Scholar 

  49. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449

    Article  CAS  Google Scholar 

  50. Liu X, Su W, Lu Z, Liu J, Pei L, Liu W, He L (2000) Mixed valence state and electrical conductivity of La1-xSrxCrO3. J Alloys Compd 305:21–23

    Article  CAS  Google Scholar 

  51. Rida K, Benabbas A, Bouremmad F, Peña MA, Martínez-Arias A (2006) Surface properties and catalytic performance of La1-xSrxCrO3 perovskite-type oxides for CO and C3H6 combustion. Catal Commun 7:963–968

    Article  CAS  Google Scholar 

  52. Gómez-Cuaspud JA, Perez CA, Schmal M (2016) Nanostructured La0.8Sr0.2Fe0.8Cr0.2O3 Perovskite for the Steam Methane Reforming. Catal Letter 146:2504–2515

    Article  CAS  Google Scholar 

  53. Escolástico S, Somacescu S, Serra JM (2015) Tailoring mixed ionic-electronic conduction in H2 permeable membranes based on the system Nd5.5W1-xMoxO11.25-δ. J Mater Chem A 3:719–731

    Article  CAS  Google Scholar 

  54. Majewski AJ, Wood J (2014) Tri-reforming of methane over Ni@SiO2 catalyst Int. J. Hydrogen Energy 39(24):12578–12585

    Article  CAS  Google Scholar 

  55. García-Vargas JM, Valverde JL, Díez J, Sánchez P, Dorado F (2014) Influence of alkaline and alkaline-earth cocations on the performance of Ni/-SiC catalysts in the methane tri-reforming reaction. Appl Catal B 148–149:322–329

    Article  CAS  Google Scholar 

  56. Kumar R, Kumar K, Choudary NV, Pant KK (2019) Effect of support materials on the performance of Ni-based catalysts in tri-reforming of methane. Fuel Process Technol 186:40–52

    Article  CAS  Google Scholar 

  57. Wang Y, Liu Z, Wang R (2020) NaBH4 Surface Modification on CeO2 Nanorods Supported Transition-Metal Catalysts for Low Temperature CO Oxidation. Chem Cat Chem 12(17):4304–4316

    CAS  Google Scholar 

  58. Danilova MM, Fedorova ZA, Kuzmin VA, Zaikovskii VI, Porsin AV, Krieger TA (2015) Combined steam and carbon dioxide reforming of methane over porous nickel based catalysts. Catal Sci Technol 5:2761–2768

    Article  CAS  Google Scholar 

  59. Foger K, Hoang M, Turney TW (1992) Formation and thermal decomposition of rare-earth carbonates. J Mater Sci 27(1):77–82

    Article  CAS  Google Scholar 

  60. García-Vargas JM, Valverde JL, Díez J, Dorado F, Sanchez P (2015) Catalytic and kinetic analysis of the methane tri-reforming over a Ni-Mg/b-SiC catalyst. Inter J Hydrogen Energy 40:8677–8687

    Article  CAS  Google Scholar 

  61. Takagi H, Maruyama K, Yoshizawa N, Yamada Y, Sato Y (2004) XRD analysis of carbon stacking structure in coal during heat treatment. Fuel 83(17–18):2427–2433

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the RCGI—Research Centre for Gas Innovation, hosted by the University of São Paulo (USP) and sponsored by FAPESP–the State of São Paulo Research Foundation (2014/50279-4) and Shell Brasil. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brasil (CAPES)–Finance Code 001 and to M.A. da Silva for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schmal.

Ethics declarations

Conflict of interest

We do not have financial interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de C. Roseno, K.T., Antunes, R.A., Alves, R.M.B. et al. Tri-Reforming of Methane over NdM0.25Ni0.75O3 (M = Cr, Fe) Catalysts and the Effect of CO2 Composition. Catal Lett 151, 3639–3655 (2021). https://doi.org/10.1007/s10562-021-03600-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03600-0

Keywords

Navigation