Skip to main content
Log in

Heterogeneous Catalytic Oxidative Bromination and Oxidation of Thioethers By Vanadium(IV) Oxido Complex of Benzoylacetone and Effect of Solid Supports

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Vanadium(IV) oxido complex of 1-Phenyl-1,3-butanedione [VIVO(bzac)2] (1) was prepared, characterized, and heterogenized onto APTMS modified graphene oxide, as well as imidazole modified polystyrene beads. Graphene oxide supported complex GO-APTMS-[VIVO(bzac)2] (2) and polymer anchored complex PS-im-[VIVO(bzac)2] (3) were used for the oxidative bromination of a number of small organic molecules and oxidation of a series of thioethers. Both 2 and 3 evolve as excellent heterogeneous catalysts. The nature of solid support does not impact substrate conversion (%) during the oxidative bromination of salicylaldehyde, phenol, or styrene, whereas it influences the substrate conversion (%) as well as the product selectivity (%) during the oxidation of thioethers.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Scheme 3
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Willis AL, Chen Z, He J, Zhu Y, Turro NJ, Brien SO (2007) J Nanomater 2007:1–7

    Article  CAS  Google Scholar 

  2. Hänninen MM, Peuronen A, Damlin P, Tyystjärvi V, Kiveläc H, Lehtonen A (2014) Dalton Trans 43:14022–14028

    Article  PubMed  CAS  Google Scholar 

  3. Levy GC, Dechter JJ, Kowalewski J (1978) J Am Chem Soc 100:2308–2314

    Article  CAS  Google Scholar 

  4. Haselmann GM, Nandan SP, Wang J, Giesriegl A, Cherevan AS, Eder D (2019) J Mater Chem A 7:18568–18579

    Article  Google Scholar 

  5. Bhattacharjee CR, Chaudhary MK (1989) Proc Indian Natl Sci Acad 55:194–211

    CAS  Google Scholar 

  6. Zhang P, Wang C, Chenb Z, Li H (2011) Catal Sci Technol 1:1133–1137

    Article  CAS  Google Scholar 

  7. Kumar S, Jain SL, Sain B (2012) Catal Lett 142:615–618

    Article  CAS  Google Scholar 

  8. Dobrzynski P (2002) J Polym Sci 40:3129–3143

    Article  CAS  Google Scholar 

  9. Mirzaee M, Bahramian B, Gholizadeh J, Feizi A, Gholami R (2017) Chem Eng J 308:160–168

    Article  CAS  Google Scholar 

  10. Suslov DS, Bykov MV, Pakhomova MV, Abramov PA, Ushakov IA, Tkacha VS (2017) Catal Commun 94:69–72

    Article  CAS  Google Scholar 

  11. Brahma S, Borah R, Deori N (2020) New J Chem 44:2547–2554

    Article  Google Scholar 

  12. Mesdour S, Lekbir C, Doumandji L, Hamada B (2017) J Sulfur Chem 38:421–439

    Article  CAS  Google Scholar 

  13. Xua J, Honga Y, Chenga MJ, Xuea B, Lia YX (2019) Microporous Mesoporous Mater 285:223–230

    Article  CAS  Google Scholar 

  14. Sheela A, Sarada NC, Vijayaraghavan R (2013) Med Chem Res 22:2929–2937

    Article  CAS  Google Scholar 

  15. Chinthala CP, Angappan S (2017) Appl Organometal Chem 31:1–12

    Article  CAS  Google Scholar 

  16. Carneiro L, Silva AR (2016) Catal Sci Technol 6:8166–8176

    Article  CAS  Google Scholar 

  17. Zdarta J, Jedrzak A, Klapiszewski Ł, Jesionowski T (2017) Catalysts 7:1–17

    Google Scholar 

  18. Kim MJ, Ahn S, Yi J, Hupp JT, Notestein JM, Farha O, Lee SJ (2017) Catal Sci Technol 7:4351–4354

    Article  CAS  Google Scholar 

  19. Camarada MB (2017) J Phys Chem A 121:8124–8135

    Article  CAS  PubMed  Google Scholar 

  20. Song Y, Li Z, Ji P, Kaufmann M, Feng X, Chen JS, Wang C, Lin W (2019) ACS Catal 9:1578–1583

    Article  CAS  Google Scholar 

  21. Nikoorazm M, Choghamarani G, Khanmoradi M (2016) Appl Organometal Chem 30:236–241

    Article  CAS  Google Scholar 

  22. Xiong W, Mehrabadi BAT, Karakolos SG, White RD, Shakouri A, Kasak P, Zaidi SJ, Weidner JW, Regalbuto JR, Mercado HC, Monnier JR (2020) ACS Appl Energy Mater 3:5487–5496

    Article  CAS  Google Scholar 

  23. Li Z, Wu S, Ding H, Zheng D, Hu J, Wang X, Huo Q, Guan J, Kan Q (2013) New J Chem 37:1561–1568

    Article  CAS  Google Scholar 

  24. Zhao Q, Li Y, Liu R, Chen A, Zhang G, Zhang F, Fan X (2013) J Mater Chem A 1:15039–15045

    Article  CAS  Google Scholar 

  25. Navaljn S, Herance JR (2017) lvaro M, Garcia H. Chem Eur J 23:15244–15275

    CAS  Google Scholar 

  26. Maurya A, Kesharwani N, Kachhap P, Mishra VK, Chaudhary N, Haldar C (2019) Appl Organometal Chem 33:1–23

    Google Scholar 

  27. Singh VK, Maurya A, Kesharwani N, Kachhap P, Kumari S, Mahato AK, Mishra VK, Haldar C (2018) J Coord Chem 71:520–541

    Article  CAS  Google Scholar 

  28. Rowe RA, Jones MM (1957) Inorg Synth 5:113–116

    CAS  Google Scholar 

  29. Paulchamy B, Arthi G, Lignesh BD (2015) J Nanomed Nanotechnol 6:1–4

    Google Scholar 

  30. Tangestaninejad S, Habibi MH, Mirkhani V, Moghadam M, Grivani G (2006) J Mol Catal A 255:249–253

    Article  CAS  Google Scholar 

  31. Maurya MR, Kumar M, Arya A (2008) Catal Commun 10:187–191

    Article  CAS  Google Scholar 

  32. Maurya MR, Kumar A, Pessoa JC (2011) Coord Chem Rev 255:2315–2344

    Article  CAS  Google Scholar 

  33. Maurya MR (2018) Top Catal 61:1500–1513

    Article  CAS  Google Scholar 

  34. Hon PK, Belford RL, Pfluger CE (1965) J Chem Phys 43:1323–1333

    Article  CAS  Google Scholar 

  35. Veisi H, Rashtiani A, Rostami A, Shirinbayan M, Hemmati S (2019) Polyhedron 157:358–366

    Article  CAS  Google Scholar 

  36. Zhang Y, Yang T, Zheng BY, Liu MY, Xing N (2017) Polyhedron 121:123–129

    Article  CAS  Google Scholar 

  37. Sun Y, Zheng W, Fu S, Singh RP (2020) Chem Eng J 391:1–9

    Google Scholar 

  38. Verma S, Aila M, Kaul S, Jain SL (2014) RSC Adv 4:30598–30604

    Article  CAS  Google Scholar 

  39. Maurya MR, Chaudhary N, Avecilla F (2014) Polyhedron 67:436–448

    Article  CAS  Google Scholar 

  40. Mungse HP, Verma S, Kumar N, Sain B, Khatri OP (2012) J Mater Chem 22:5427–5433

    Article  CAS  Google Scholar 

  41. Maurya MR, Chaudhary N, Avecilla F, Adão P, Pessoa JC (2015) Dalton Trans 44:1211–1232

    Article  CAS  PubMed  Google Scholar 

  42. Lv G, Chen S, Zhu H, Li M, Yang Y (2018) J Clean Prod 196:32–41

    Article  CAS  Google Scholar 

  43. Vardhan H, Verma G, Ramani S, Nafady A, Al-Enizi AM, Pan Y, Yang Z, Yang H, Ma S (2019) ACS Appl Mater Interfaces 11:3070–3079

    Article  CAS  PubMed  Google Scholar 

  44. Veisi H, Safarimehr P, Hemmati S (2018) J Taiwan Inst Chem Eng 88:8–17

    Article  CAS  Google Scholar 

  45. Qi Y, Xu Q, Tu G, Fu Y, Zhang F, Zhu W (2020) Catal Commun 145:1–5

    Article  CAS  Google Scholar 

  46. Veisi H, Sajjadifar S, Biabri PM, Hemmati S (2018) Polyhedron 153:240–247

    Article  CAS  Google Scholar 

  47. Liu X, Xiao J, Ding H, Zhong W, Xu Q, Su S, Yin D (2016) Chem Eng J 283:1315–1321

    Article  CAS  Google Scholar 

  48. Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Appl Surf Sci 257:887–898

    Article  CAS  Google Scholar 

  49. Leblanc C, Vilter H, Fournier JB, Delagea L, Potin P, Rebuffet E, Michel G, Solari PL, Feiters MC, Czjzek M (2015) Coord Chem Rev 301–302:134–146

    Article  CAS  Google Scholar 

  50. Maurya MR, Haldar C, Kumar A, Kuznetsov ML, Pessoa JC (2013) Dalton Trans 42:11941–11962

    Article  CAS  PubMed  Google Scholar 

  51. Bhunia S, Saha D, Koner S (2011) Langmuir 27:15322–15329

    Article  CAS  PubMed  Google Scholar 

  52. Dar TA, Uprety B, Sankar M, Maurya MR (2019) Green Chem 21:1757–1768

    Article  CAS  Google Scholar 

  53. Palmajumder E, Patra S, Drewb MGB, Mukherjea KK (2016) New J Chem 40:8696–8703

    Article  CAS  Google Scholar 

  54. Islam SM, Roy AS, Mondal P, Salam N (2012) J Mol Catal A 358:38–48

    Article  CAS  Google Scholar 

  55. Islam SM, Molla RA, Roy AS, Ghosh K, Salam N, Iqubal MA, Tuhina K (2014) J Organomet Chem 761:169–178

    Article  CAS  Google Scholar 

  56. Maurya A, Mahato AK, Chaudhary N, Kesharwani N, Kachhap P, Mishra VK, Haldar C (2020) Appl Organometal Chem 34:1–21

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C. H. thanks the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), the Government of India, New Delhi, for financial support (Grant No. SB/EMEQ-055/2014) of the work. N. K. is thankful to IIT (ISM) Dhanbad for fellowship. The authors would like to thank Dr. G. C. Nayak Department of Chemistry, IIT (ISM) Dhanbad, India, for SEM/EDX analysis. The authors would like to thank SAIF Mumbai for TGA/DTA and EPR analysis. The authors acknowledge CFR IIT (ISM) Dhanbad for providing single-crystal XRD data. GC used in this study was procured from the grant given by Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Grant No. SB/FT/CS-027/2014, Government of India, New Delhi, India, to C. H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanchal Haldar.

Ethics declarations

Conflict of Interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 909 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesharwani, N., Chaudhary, N. & Haldar, C. Heterogeneous Catalytic Oxidative Bromination and Oxidation of Thioethers By Vanadium(IV) Oxido Complex of Benzoylacetone and Effect of Solid Supports. Catal Lett 151, 3562–3581 (2021). https://doi.org/10.1007/s10562-021-03594-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03594-9

Keywords

Navigation