Skip to main content

Advertisement

Log in

A Tubular g-C3N4 Based Composite Photocatalyst Combined with Co3O4 Nanoparticles for Photocatalytic Degradation of Diesel Oil

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The photocatalysis is a very promising technique to address the serious issues of environmental pollution. Among the common photocatalysts, the graphitic carbon nitride (g-C3N4) is widely used for the photodegradation of organic pollutants due to its proper band structure. To further improve the photocatalytic performance of g-C3N4, a novel composite photocatalyst of Co3O4/PT-C3N4 has been prepared by using a one-pot calcination method, in which cobalt tetroxide (Co3O4) nanoparticles as the cocatalyst are introduced on the surface of rectangular hollow g-C3N4 substrate (PT-Co3O4). As a result, the obtained composite photocatalyst (Co3O4/PT-C3N4) delivers an excellent photodegradation performance for diesel oil under a simulated sunlight, which can improve the separation efficiency of the photo-induced electron–hole pairs. The Co3O4/PT-C3N4 composite photocatalyst exhibits a high degradation efficiency of 96.27% after 2 h of visible light, which is much higher than that of the PT-C3N4 photocatalyst. Moreover, the composite photocatalyst can still maintain a high photodegradation efficiency after 10 cycles, exhibiting an excellent cyclic stability. The photo-induced carriers generated by the Co3O4/PT-C3N4 composite photocatalyst follow the Z-scheme heterojunction transfer mechanism. This work gives a fresh idea for the exploration of new high-performance photocatalyst for the treatment of organic environmental pollutants.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Teixeira IF, Barbosa ECM, Tsang SCE et al (2018) Carbon nitrides and metal nanoparticles: from controlled synthesis to design principles for improved photocatalysis. Chem Soc Rev 47:7783–7817

    Article  CAS  PubMed  Google Scholar 

  2. Zhang F, Li Y, Li J et al (2019) 3D graphene-based gel photocatalysts for environmental pollutants degradation. Environ Pollut 253:365–376

    Article  CAS  PubMed  Google Scholar 

  3. Chen D, Cheng Y, Zhou N et al (2020) Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J Clean Prod 268:121725

    Article  CAS  Google Scholar 

  4. Liu X, Ma R, Zhuang L et al (2020) Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2020.1734433

    Article  Google Scholar 

  5. An S, Zhang G, Wang T et al (2018) High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano. https://doi.org/10.1021/acsnano.8b04693

    Article  PubMed  Google Scholar 

  6. Liu J, Xiong C, Jiang S et al (2019) Efficient evolution of reactive oxygen species over the coordinated π-delocalization g-C3N4 with favorable charge transfer for sustainable pollutant elimination. Appl Catal B 249:282–291

    Article  CAS  Google Scholar 

  7. Chen D, Liu J, Jia Z et al (2019) Efficient visible-light-driven hydrogen evolution and Cr(VI) reduction over porous P and Mo co-doped g-C3N4 with feeble N vacancies photocatalyst. J Hazard Mater 361:294–304

    Article  CAS  PubMed  Google Scholar 

  8. Xia P, Antonietti M, Zhu B et al (2019) Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase. Adv Functn Mater 29:1900093

    Article  CAS  Google Scholar 

  9. Jiang L, Yuan X, Zeng G et al (2018) In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl Catal B 227:376–385

    Article  CAS  Google Scholar 

  10. Zhang X, Wang X, Meng J et al (2021) Robust Z-scheme g-C3N4/WO3 heterojunction photocatalysts with morphology control of WO3 for efficient degradation of phenolic pollutants. Sep Purif Technol 255:117693

    Article  CAS  Google Scholar 

  11. He F, Wang Z, Li Y et al (2020) The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Appl Catal B 269:118828

    Article  CAS  Google Scholar 

  12. Wang Y, Yang W, Chen X et al (2018) Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer. Appl Catal B 220:337–347

    Article  CAS  Google Scholar 

  13. Mohamed MA, Zain MMF, Minggu JL et al (2018) Constructing bio-templated 3D porous microtubular C-doped g-C3N4 with tunable band structure and enhanced charge carrier separation. Appl Catal B Environ 236:265–279

    Article  CAS  Google Scholar 

  14. Fu J, Zhu B, Jiang C et al (2017) Hierarchical porous O-Doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 13(15):1603938

    Article  CAS  Google Scholar 

  15. Malik R, Tomer VK, Joshi NJ et al (2018) Au-TiO2 loaded cubic g-C3N4 nanohybrids for photocatalytic and volatile organic amines (VOAs) sensing applications. ACS Appl Mater Interf 10:34087

    Article  CAS  Google Scholar 

  16. Wu M, Li L, Xue Y et al (2018) Fabrication of ternary GO/g-C3N4/MoS2 flower-like heterojunctions with enhanced photocatalytic activity for water remediation. Appl Catal B 228:103–112

    Article  CAS  Google Scholar 

  17. Xie Z, Feng Y, Wang F et al (2018) Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Appl Catal B 229:96–104

    Article  CAS  Google Scholar 

  18. Li J, Cai S, Yu E et al (2018) Efficient infrared light promoted degradation of volatile organic compounds over photo-thermal responsive Pt-rGO-TiO2 composites. Appl Catal B 233:260–271

    Article  CAS  Google Scholar 

  19. Liu C, Wang F, Zhang J et al (2018) Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures. Nano-Micro Letters. https://doi.org/10.1007/s40820-018-0192-6

    Article  PubMed  PubMed Central  Google Scholar 

  20. Qu L, Zhu G, Ji J et al (2018) Recyclable visible light-driven O-g-C3N4/GO/N-CNT membrane for efficient removal of organic pollutants. ACS Appl Mater Interf 49:42427–42435

    Article  CAS  Google Scholar 

  21. Liu J, Li Y, Ke J et al (2018) Black NiO-TiO2 nanorods for solar photocatalysis: recognition of electronic structure and reaction mechanism. Appl Catal B 224:705–714

    Article  CAS  Google Scholar 

  22. Ligon C, Latimer K, Hood ZD et al (2018) Electrospun metal and metal alloy decorated TiO2 nanofiber photocatalysts for hydrogen generation. RSC Adv 8(57):32865–32876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng L, Zhang D, Fan J et al (2019) Metal phosphide modified CdxZn1−xS solid solutions as a highly active visible-light photocatalyst for hydrogen evolution. Appl Catal A Gene 590:117336

    Article  CAS  Google Scholar 

  24. Wu P, Liu Z, Chen D et al (2018) Flake-like NiO/WO3 p-n heterojunction photocathode for photoelectrochemical water splitting. Appl Surf Sci 440:1101–1106

    Article  CAS  Google Scholar 

  25. Alhaddad M, Shawky A, Zaki ZI (2020) Reduced graphene oxide-supported PbTiO3 nanospheres: improved ceramic photocatalyst toward enriched photooxidation of thiophene by visible light. Mol Catal 499:111301

    Article  CAS  Google Scholar 

  26. Shawky A, Mohamed RM, Mkhalid IA et al (2020) One-pot synthesis of Mn 3 O 4 -coupled Ag 2 WO 4 nanocomposite photocatalyst for enhanced photooxidative desulfurization of thiophene under visible light irradiation. Appl Nanosci 10(5):1545–1554

    Article  CAS  Google Scholar 

  27. Ibupoto ZH, Tahira A, Tang P et al (2019) MoSx@NiO composite nanostructures: an advanced nonprecious catalyst for hydrogen evolution reaction in alkaline media. Adv Func Mater 29(7):1807562

    Article  CAS  Google Scholar 

  28. Alhaddad M, Shawky A (2020) CuS assembled rGO heterojunctions for superior photooxidation of atrazine under visible light - Sciencedirect. J Mol Liquids 318:114377

    Article  CAS  Google Scholar 

  29. Alhaddad M, Shawky A (2020) Superior photooxidative desulfurization of thiophene by reduced graphene oxide-supported MoS2 nanoflakes under visible light. Fuel Process Technol 205:106453

    Article  CAS  Google Scholar 

  30. Kandy MM (2020) Carbon-based photocatalysts for enhanced photocatalytic reduction of CO2 to solar fuels. Sustain Energy Fuels 4(2):469–484

    Article  CAS  Google Scholar 

  31. Mkhalid IA, Shawky A (2020) Visible light-active CdSe/rGO heterojunction photocatalyst for improved oxidative desulfurization of thiophene. Ceramics Int 46:20769–20776

    Article  CAS  Google Scholar 

  32. Wang Y, Zhao J, Chen Z, Zhang F, Guo W, Lin H, Fengyu Q (2018) Construction of Z-scheme MoSe2/CdSe hollow nanostructure with enhanced full spectrum photocatalytic activity. Appl Catal B Environ 244:76–86

    Article  CAS  Google Scholar 

  33. Zhu Y, Wan T, Wen X et al (2019) Tunable Type I and II heterojunction of CoOx nanoparticles confined in g-C3N4 nanotubes for photocatalytic hydrogen production. Appl Catal B 244:814–822

    Article  CAS  Google Scholar 

  34. Liu J, Ke J, Li Y et al (2018) Co3O4 particles/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting. Appl Catal B 236:396–403

    Article  CAS  Google Scholar 

  35. Gao H, Yang H, Xu J et al (2018) Strongly coupled g-C3N4 nanosheets-Co3O4 particles as 2D/0D Heterostructure composite for peroxymonosulfate activation. Small 14(31):1801353

    Article  CAS  Google Scholar 

  36. Zhou B, Ding S, Zhang B et al (2019) Dimensional transformation and morphological control of graphitic carbon nitride from water-based supramolecular assembly for photocatalytic hydrogen evolution: from 3D to 2D and 1D nanostructures. Appl Catal B 254:321–328

    Article  CAS  Google Scholar 

  37. Zeng Z, Quan X, Yu H et al (2018) Carbon nitride with electron storage property: enhanced exciton dissociation for high-efficient photocatalysis. Appl Catal B 236:99–106

    Article  CAS  Google Scholar 

  38. Guo F, Shi W, Zhu C et al (2018) CoO and g-C3N4 complement each other for highly efficient overall water splitting under visible light. Appl Catal B 226:412–420

    Article  CAS  Google Scholar 

  39. Han C, Zhang R, Ye Y et al (2019) Chainmail co-catalyst of NiO shell-encapsulated Ni for improving photocatalytic CO2 reduction over g-C3N4. J Mater Chem A 7(16):9726–9735

    Article  CAS  Google Scholar 

  40. Yang L, Liu J, Yang L et al (2020) Co3O4 imbedded g-C3N4 heterojunction photocatalysts for visible-light-driven hydrogen evolution. Renew Energy 145:691–698

    Article  CAS  Google Scholar 

  41. Zeng Y, Li H, Luo J et al (2019) Sea-urchin-structure g-C3N4 with narrow bandgap (~2.0 eV) for efficient overall water splitting under visible light irradiation. Appl Catal B Environ 249:275–281

    Article  CAS  Google Scholar 

  42. Li Y, Ruan Z, He Y et al (2018) In situ fabrication of hierarchically porous g-C3N4 and understanding on its enhanced photocatalytic activity based on energy absorption. Appl Catal B 236:64–75

    Article  CAS  Google Scholar 

  43. Wang L, Wan J, Zhao Y et al (2019) Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. J Am Chem Soc 141(6):2238–2241

    Article  CAS  PubMed  Google Scholar 

  44. Cao Q, Guo M, Cao J et al (2019) An elemental S/P photocatalyst for hydrogen evolution from water under visible to near-infrared light irradiation. Chem Commun 55(87):13160–13163

    Article  CAS  Google Scholar 

  45. Sun J, Yang S, Liang Z et al (2020) Two-dimensional/one-dimensional molybdenum sulfide (MoS2) nanoflake/graphitic carbon nitride (g-C3N4) hollow nanotube photocatalyst for enhanced photocatalytic hydrogen production activity. J Colloid Interf Sci 567:300–307

    Article  CAS  Google Scholar 

  46. Li H, Wang M, Wei Y et al (2019) Noble metal-free NiS2 with rich active sites loaded g-C3N4 for highly efficient photocatalytic H2 evolution under visible light irradiation. J Colloid Interface Sci 534:343–349

    Article  CAS  PubMed  Google Scholar 

  47. Hu J, Zhang P, An W et al (2019) In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater. Appl Catal B 245:130–142

    Article  CAS  Google Scholar 

  48. Agyei-Tuffour B, Gbogbo S, Dodoo-Arhin D et al (2020) Photocatalytic degradation of fractionated crude oil: potential application in oil spill remediation. Cogent Eng 7(1):1744944

    Article  Google Scholar 

  49. Liu Y, Yuan A, Xiao Y et al (2020) Two-dimensional/two-dimensional Z-scheme photocatalyst of graphitic carbon nitride/bismuth vanadate for visible-light-driven photocatalytic synthesis of imines – sciencedirect. Ceram Int 46(10):16157–16165

    Article  CAS  Google Scholar 

  50. Yuan J, Tang Y, Yi X, Liu C, Li C, Zeng Y, Luo S (2019) Crystallization, cyanamide defect and ion induction of carbon nitride: exciton polarization dissociation, charge transfer and surface electron density for enhanced hydrogen evolution. Appl Catal B Environ 251:206–212

    Article  CAS  Google Scholar 

  51. Yoo I-h, Kalanur SS, Seo H (2019) A nanoscale p–n junction photoelectrode consisting of an NiOx Layer on a TiO2-CdS nanorod core-shell structure for highly efficient solar water splitting. Appl Catal B Environ 250:200–212

    Article  CAS  Google Scholar 

  52. Xiao J, Xie Y, Nawaz F et al (2016) Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst: a potential sunlight/O-3/g-C3N4 method for efficient water decontamination. Appl Catal B Environ 181:420–428

    Article  CAS  Google Scholar 

  53. Shi H, Wang C, Zhao Y et al (2019) Highly efficient visible light driven photocatalytic inactivation of E. coli with Ag QDs decorated Z-scheme Bi2S3/SnIn4S8 composite. Appl Catal B Environ 254:403–413

    Article  CAS  Google Scholar 

  54. Wu Y, Chu D, Yang P et al (2015) Ternary mesoporous WO3/Mn3O4/N-doped graphene nanocomposite for enhanced photocatalysis under visible light irradiation. Catal Sci Technol 5(6):3375–3382

    Article  CAS  Google Scholar 

  55. Xia H, Zhang Z, Liu J et al (2019) Developing superior catalysts engineered by multichannel healing strategy for advanced oxidation. Appl Catal B 250:189–199

    Article  CAS  Google Scholar 

  56. Li L, Mao M, She X et al (2020) Direct Z-scheme photocatalyst for efficient water pollutant degradation: a case study of 2D g-C3N4/BiVO4. Mater Chem Phys 241:122308

    Article  CAS  Google Scholar 

  57. Wang W, Qiao Z, Lee G et al (2020) Preparation of ternary photocatalysts and their application in the degradation of 1,4-dioxane using O3/UV/photocatalyst process. Sep Purif Technol 235:116194

    Article  CAS  Google Scholar 

  58. Lei H, Wu M, Liu Y et al (2020) Built-in piezoelectric field improved photocatalytic performance of nanoflower-like Bi 2 WO 6 using low-power white LEDs. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2020.12.019

    Article  Google Scholar 

  59. Huang L, Li B, Su B et al (2020) Fabrication of hierarchical Co3O4@CdIn2S4 p–n heterojunction photocatalysts for improved CO2 reduction with visible light. J Mater Chem A 8(15):7177–7183

    Article  CAS  Google Scholar 

  60. Rahimi K, Zafarkish H, Yazdani A (2018) Reduced graphene oxide can activate the sunlight-induced photocatalytic effect of NiO nanowires. Mater Des 144:214–221

    Article  CAS  Google Scholar 

  61. Kotnik P, Čolnik M, Finšgar M et al (2020) Determination of C1C6 hydrocarbons in gaseous plastic degradation products by GC–MS method. Polym Degrad Stab 182:109386

    Article  CAS  Google Scholar 

  62. Lee TG, Lim SY, Song KH et al (2014) Liquid-liquid equilibria for the ternary systems of 4-methyl-1,3-dioxolan-2-one + 1,4-dimethylbenzene + octane, decane, or dodecane and the ternary systems of acetonitrile + morpholine + octane, decane, or dodecane at 313.15 K or 298.15 K. J Chem Eng Data 59(3):890–895

    Article  CAS  Google Scholar 

  63. Yuan S, Chen Y, Yin H et al (2019) Liquid-liquid equilibria for systems of ethanol + octanol + nonanol + dodecane + tridecane + water at different temperatures under atmospheric pressure. J Chem Eng Data 64(7):3008–3017

    Article  CAS  Google Scholar 

  64. Liu Y, Gong S, Wang H et al (2020) Pyrolysis of C8–C16 hydrocarbons with different molecular structures using high-pressure micro-reactor with GC-MS/FID. J Anal Appl Pyrol 149:104864

    Article  CAS  Google Scholar 

  65. Garciamartinez M, Dariva I, Canoira L et al (2006) Photodegradation of polycyclic aromatic hydrocarbons in fossil fuels catalysed by supported TiO2. Appl Catal B Environ 67:279–289

    Article  CAS  Google Scholar 

  66. Elsayed MH, Jayakumar J, Abdellah M et al (2020) Visible-light-driven hydrogen evolution using nitrogen-doped carbon quantum dot-implanted polymer dots as metal-free photocatalysts. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2020.119659

    Article  Google Scholar 

  67. Jiang Z, Zhang X, Chen HS et al (2019) Formation of g-C3N4 nanotubes towards superior photocatalysis performance. ChemCatChem 11(18):4558–4567

    Article  CAS  Google Scholar 

  68. Qi Y, Xu J, Fu Y et al (2019) Metal-organic framework templated synthesis of g-C3N4/Fe2O3@FeP composites for enhanced hydrogen production. ChemCatChem 11(15):3465–3473

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21975180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xu.

Ethics declarations

Disclosures

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, EP., Dong, R., Zhang, S. et al. A Tubular g-C3N4 Based Composite Photocatalyst Combined with Co3O4 Nanoparticles for Photocatalytic Degradation of Diesel Oil. Catal Lett 151, 3437–3450 (2021). https://doi.org/10.1007/s10562-021-03583-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03583-y

Keywords

Navigation