Skip to main content

Advertisement

Log in

Constructing 0D/2D Z-Scheme Heterojunction of CdS/g-C3N4 with Enhanced Photocatalytic Activity for H2 Evolution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

0D/2D Pt-C3N4/CdS heterojunction photocatalyst were fabricated with CdS quantum dots interspersed on g-C3N4 nanosheets via successive ionic layer absorption process. The obtained Pt-C3N4/CdS Z-scheme heterojunction with Pt cocatalyst deposited on g-C3N4 nanosheets exhibited H2 production rate of 35.3 mmol g−1 h−1, which is 3.1 times higher than that of Pt-CdS/C3N4. The enhanced photocatalytic activity are attributed to the Z-scheme charge carrier transfer mechanism with stronger redox ability. The photocatalytic mechanism of the CdS/g-C3N4 composite is investigated and demonstrated in this work. It may provide unique insights to design 0D/2D Z-scheme heterojunction photocatalyst systems using a facile method for highly efficient H2 production.

Graphic Abstract

Schematic illustration of charge transfer modulated by the metal cocatalyst selective deposition on heterojunction-type II (a) and direct Z-Scheme mechanisms (b) over the C3N4/CdS heterostructure composites under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rao CN, Lingampalli SR (2016) Generation of hydrogen by visible light-induced water splitting with the use of semiconductors and dyes. Small 12:16–23

    Article  CAS  PubMed  Google Scholar 

  2. Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfidenanomaterials. ACS Catal 4:3957–3971

    Article  CAS  Google Scholar 

  3. Liu J, Woll C (2017) Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges. ChemSoc Rev 46:5730–5770

    CAS  Google Scholar 

  4. Yuan YP, Ruan LW, Barber J, Loo SCJ, Xue C (2014) Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy Environ Sci 7:3934–3951

    Article  CAS  Google Scholar 

  5. Ma Y, Wang XL, Jia YS, Chen XB, Han HX, Li C (2014) Titanium dioxide based nanomaterials for photocatalytic fuel generations. Chem Rev 114:9987–10043

    Article  CAS  PubMed  Google Scholar 

  6. Jin J, Yu JG, Liu G, Wong P (2013) Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. J Mater Chem A 1:10927–10934

    Article  CAS  Google Scholar 

  7. Weng B, Quan Q, Xu YJ (2016) Decorating geometry- and size-controlled sub-20 nm Pdnanocubes onto 2D TiO2 nanosheets for simultaneous H2 evolution and 1,1-diethoxyethane production. J Mater Chem A 4(47):18366–18377

    Article  CAS  Google Scholar 

  8. Ran JR, Zhang J, Yu JG, Qiao SZ (2014) Enhanced visible-light photocatalytic H2 production by ZnxCd1-xS modified with earth abundant nickel based cocatalysts. Chemsuschem 7:3426–3434

    Article  CAS  PubMed  Google Scholar 

  9. Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A, Kemp KW, Kramer IJ, Ning Z, Labelle AJ, Chou KW, Amassian A, Sargent EH (2012) Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7(9):577–582

    Article  CAS  PubMed  Google Scholar 

  10. Ren DD, Shen RC, Jiang ZM, Lu XY, Li X (2020) Highly efficient visible-light photocatalytic H2 evolution over 2D–2D CdS/Cu7S4 layered heterojunctions. Chin J Catal 41:31–40

    Article  CAS  Google Scholar 

  11. Liang ZZ, Shen RC, Ng YH, Zhang P, Xiang QJ, Li X (2020) A review on 2D MoS2cocatalysts in photocatalytic H2 production. J Mater SciTechnol 56:89–121

    Google Scholar 

  12. Ma S, Xu YM, Xie J, Li X (2017) Improved visible-light photocatalytic H2 generation over CdSnanosheets decorated by NiS2 and metallic carbon black as dual earth-abundant cocatalysts. Chin J Catal 38:1970–1980

    Article  CAS  Google Scholar 

  13. Shen CR, Ren DD, Ding YN, Guan YT, Ng YH, Zhang P, Li X (2020) Nanostructured CdS for efficient photocatalytic H2 evolution: a reviews. Sci China Mater 63:2153–2188

    Article  CAS  Google Scholar 

  14. Shen CR, Zhang LP, Chen XZ, Jaroniec M, Li N, Li X (2020) Integrating 2D/2D CdS/α-Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic β-NiSnanosheet-based ohmic-junction for efficient photocatalytic H2 evolution. ApplCatal B-Environ 266:118619

    Article  CAS  Google Scholar 

  15. Chai Z, Zeng TT, Qi L, Lu LQ, Xiao WJ, Xu D (2016) Efficient Visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdSphotocatalyst. J Am ChemSoc 138:10128–10131

    Article  CAS  Google Scholar 

  16. Duan JJ, Chen S, Jaroniec M, Qiao SZ (2015) Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9(1):931–940

    Article  CAS  PubMed  Google Scholar 

  17. Wang LN, Wang CY, Hu XY, Xue HG, Pang H (2016) Metal/graphitic carbon nitride composites: synthesis, structures, and applications. Chem Asian J 11:3305–3328

    Article  CAS  PubMed  Google Scholar 

  18. Sun SD, Liang SH (2017) Recent advances in functional mesoporous graphitic carbon nitride (mpg-C3N4) polymers. Nanoscale 9(30):10544–10578

    Article  CAS  PubMed  Google Scholar 

  19. Ren D, Zhang W, Ding Y, Shen R, Jiang Z, Lu X, Li X (2020) In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D–2D step-Scheme heterojunctions for highly active H2 evolution. Sol RRL 4:1900423

    Article  CAS  Google Scholar 

  20. Fu JW, Zhu BC, Jiang CJ, Cheng B, You W, Yu JG (2017) Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 13(15):1603938–1603947

    Article  CAS  Google Scholar 

  21. Cao SW, Yuan YP, Fang J, Shahjamali MM, Boey FYC, Barbe J, Loo SCJ, Xue C (2013) In-situ growth of CdS quantum dots on g-C3N4nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. Int J Hydrogen Energy 38:1258–1266

    Article  CAS  Google Scholar 

  22. Xian JJ, Li DZ, Chen J, Li XF, He M, Shao Y, Yu LH, Fang JL (2014) TiO2 nanotube array-graphene-CdS quantum dots composite film in Z-scheme with enhanced photoactivity and photostability. ACS Appl Mater Interfaces 6(15):13157–13166

    Article  CAS  PubMed  Google Scholar 

  23. Zhao TY, Xing ZP, Xiu ZY, Li Z, Yang S, Zhou W (2019) Oxygen-doped MoS2nanospheres/CdS quantum dots/g-C3N4nanosheetssper-architectures for prolonged charge lifetime and enhanced visible-light-driven photocatalytic performance. ACS Appl Mater Interfaces 11:7104–7111

    Article  CAS  PubMed  Google Scholar 

  24. Ren D, Liang Z, Ng YH, Zhang P, Xiang Q, Li X (2020) Strongly coupled 2D–2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdSnanosheets for efficient photocatalytic H2 evolution. ChemEng J 390:124496

    CAS  Google Scholar 

  25. Xiong MH, Yan JT, Chai B, Fan GZ, Song GS (2020) Liquid exfoliating CdS and MoS2 to construct 2D/2D MoS2/CdSheterojunctions with significantly boosted photocatalytic H2 evolution activity. J Mater SciTechnol 56:79–188

    Google Scholar 

  26. Li WB, Feng C, Dai SY, Yue JG, Hua FX, Hou H (2015) Fabrication of sulfur-doped g-C3N4/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light. ApplCatal B Environ 169:465–471

    Article  CAS  Google Scholar 

  27. Wang K, Zhang GK, Li J, Li Y, Wu X (2017) 0D/2D Z-Scheme heterojunctions of Bismuth tantalate quantum dots/ultrathin g-C3N4nanosheets for highly efficient visible light photocatalytic degradation of antibiotics. ACS Appl Mater Interfaces 9:43704–43715

    Article  CAS  PubMed  Google Scholar 

  28. Xu QL, Zhang LY, Cheng B, Fan JJ, Yu JG (2020) S-Scheme heterojunctionpotocatalyst. Chem 6(7):1543–155929

    Article  CAS  Google Scholar 

  29. Lee SC, Lintang HO, Yuliati L (2012) A urea precursor to synthesize carbon nitride with mesoporosity for enhanced activity in the photocatalytic Removal of phenol. Chem Asian J 7:2139–2144

    Article  CAS  PubMed  Google Scholar 

  30. Marchal C, Cottineau T, Medrano MGM, Caps CCJV, Keller V (2018) Au/TiO2-g-C3N4nanocomposites for enhanced photocatalytic H2 production from water under visible light irradiation with very low quantities of sacrificial agents. Adv Energy Mater 8(14):1702142–1702154

    Article  CAS  Google Scholar 

  31. Li CJ, Wang SP, Wang T, Wei YJ, Zhang P, Gong JL (2014) Photocatalysts: monoclinic porous BiVO4networks decorated by discrete g-C3N4nano-islands with tunablecoverage for highly efficient photocatalysis. Small 10(14):2783–2790

    Article  CAS  PubMed  Google Scholar 

  32. Zhang SW, Li JX, Wang XK, Huang YS, Zeng MY, Xu JZ (2014) In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonicphotocatalyst for highly efficient visible-light photocatalysis. ACS Appl Mater Interfaces 6(24):22116–22125

    Article  CAS  PubMed  Google Scholar 

  33. Yan ZP, Sun ZJ, Liu X, Jia HX, Du PW (2016) Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light. Nanoscale 8(8):4748–4756

    Article  CAS  PubMed  Google Scholar 

  34. Xu Y, Fu ZC, Cao S, Chen Y, Fu WF (2017) Highly selective oxidation of sulfides on a CdS/C3N4 catalyst with dioxygen under visible-light irradiation. CatalSciTechnol 7:587–595

    CAS  Google Scholar 

  35. Li YG, Wei XL, Li HJ, Wang RR, Feng J, Yun H, Zhou AN (2015) Fabrication of inorganic-organic core-shell heterostructure:novel CdS@g-C3N4nanorod arrays for photoelectrochemical hydrogen evolution. RSC Adv 5(19):14074–14080

    Article  CAS  Google Scholar 

  36. Xia PF, Zhu BC, Cheng B, Yu JG, Xu JS (2018) 2D/2D g-C3N4/MnO2nanocomposite as a direct Zschemephotocatalyst for enhanced photocatalytic activity. ACS Sustain ChemEng 6(1):965–973

    Article  CAS  Google Scholar 

  37. Zhang ZW, Li QH, Qiao XQ, Hou DF, Li DS (2019) One-pot hydrothermal synthesis of willow branch-shaped MoS2/CdSheterojunctions for photocatalytic H2 production under visible light irradiation. Chin J Catal 40:371–379

    Article  CAS  Google Scholar 

  38. LiY Y, Ma SF, Zhou BX, Huang WQ, Fan XX, Li XF, Li K, Huang GF (2019) Hydroxy-carbonate-assisted synthesis of high porous graphitic carbon nitride with broken of hydrogen bonds as a highly efficient visible-light-driven photocatalyst. J Phys D 52:105502

    Article  CAS  Google Scholar 

  39. Fu J, Chang BB, Tian YL, Xi FN, Dong XP (2013) Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions: in suit synthesis, exceptional activity, high stability and photocatalytic mechanism. J Mater Chem A 1(9):3083–3090

    Article  CAS  Google Scholar 

  40. Xu ZQ, Li H, Wu ZC, Sun J, Ying ZF, Wu JD, Xu N (2016) Enhanced charge separation of vertically aligned CdS/g-C3N4heterojunctionnanocone arrays and corresponding mechanisms. J Mater Chem C 4:7501–7507

    Article  CAS  Google Scholar 

  41. Chu K, Liu YP, Li YB, Guo YL, Tian Y (2020) Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl Mater Interfaces 12:7081–7090

    Article  CAS  PubMed  Google Scholar 

  42. Wang K, Li Y, Li J, Zhang G (2020) Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2 generation. ApplCatal B 263:117730

    Article  CAS  Google Scholar 

  43. Li YY, Si Y, Zhou BX, Huang WQ, Hu W, Pan A, Fan X, Huang GF (2019) Strategy to boost catalytic activity of polymeric crbonnitride:synergistic effect of controllable in situ surface engineering and morphology. Nanoscale 11(35):16393–16405

    Article  CAS  PubMed  Google Scholar 

  44. Wang BQ, Ding Y, Deng ZR, Li ZH (2019) Rational design of ternary NiS/CQDs/ZnIn2S4nanocomposites as efficient noble-metal-free photocatalyst for hydrogen evolution under visible light. Chin J Catal 40:335–342

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from National Natural Science Foundation of China (No. U1932128, 21505091 and U1510108), Natural Science Foundation and Post-doctoral Program of Henan Province(No. 202300410305 and 19030022), Youth Backbone Teachers Project of Henan Colleges and Universities (2018GGJS133) and Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijian Wang or Xiuhua Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yu, L., Wang, Z. et al. Constructing 0D/2D Z-Scheme Heterojunction of CdS/g-C3N4 with Enhanced Photocatalytic Activity for H2 Evolution. Catal Lett 151, 3550–3561 (2021). https://doi.org/10.1007/s10562-021-03579-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03579-8

Keywords

Navigation