Converting Cyclohexanone to Liquid Fuel-Grade Products: A Characterization and Comparison Study of Hydrotreating Molybdenum Catalysts

Abstract

Developing biomass-based strategies for liquid bio-fuels production is promising for the reduction of the aftereffects of fossil fuels. The conversion of lignin-derived intermediates such as cyclohexanone is currently of a great deal of interest. The current study aims to evaluate the molybdenum-based hydrotreating catalysts for the conversion of cyclohexanone in the presence of hydrogen. Catalytic experiments at 400 °C, 15 bar, and a range of WHSV were developed. The experiments reveal that catalyst type and reaction WHSV affect the cyclohexanone conversion, product distribution, deoxygenation efficiency, total hydrocarbon production capacity, and heating value of the product blend. The main products include C6 cyclic and aromatic hydrocarbons and oxygenates. Cyclohexane, cyclohexene, benzene, cyclohexanol, and phenol are major products. Small quantities of methylcyclopentane and bicyclic hydrocarbons and oxygenates are also reported in some cases. Increasing WHSV reduced the cyclohexanone conversion. Cyclohexanone conversions up to 89% were observed at the lowest WHSVs over a cobalt-molybdenum sample. The highest hydrocarbon production capacity (99.53%) was managed at WHSV = 5.240 gcyclohexanone/gcat h over a cobalt-molybdenum sample, while the highest deoxygenation efficiency, i.e. 81.29% degree of deoxygenation and 5.35 C/O ratio enhancement were achieved at WHSV = 0.262 gcyclohexanone/gcat h by a nickel-molybdenum sample. The heating values would be enhanced by up to 22.7% when cyclohexanone is converted over the utilized catalysts. The larger heating value (44.90 MJ/kg, 22.7% enhancement) was obtained over a nickel-molybdenum catalyst, which is comparable to the energy density of the conventional fuels. The results reveal that the catalysts are efficient in the conversion of cyclohexanone to liquid bio-fuels.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Ellabban O, Abu-Rub H, Blaabjerg F (2014) Renewable energy resources: current status, future prospects and their enabling technology. Renew Sustain Energy Rev 39:748–764

    Article  Google Scholar 

  2. 2.

    Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev 21:506–523

    CAS  Article  Google Scholar 

  3. 3.

    Saidi M, Samimi F, Karimipourfard D, Nimmanwudipong T, Gates BC, Rahimpour MR (2014) Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ Sci 7(1):103–129

    CAS  Article  Google Scholar 

  4. 4.

    Espinoza-Acosta JL, Torres-Chávez PI, Olmedo-Martínez JL, Vega-Rios A, Flores-Gallardo S, Zaragoza-Contreras EA (2018) Lignin in storage and renewable energy applications: a review. J Energy Chem 27(5):1422–1438

    Article  Google Scholar 

  5. 5.

    Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    CAS  Article  Google Scholar 

  6. 6.

    Bakhtyari A, Makarem MA, Rahimpour MR (2019) Hydrogen production through pyrolysis. In: Lipman TE, Weber AZ (eds) Fuel cells and hydrogen production: a the encyclopedia of sustainability science and technology, Second. Springer, New York, NY, pp 947–73

    Google Scholar 

  7. 7.

    Bakhtyari A, Makarem MA, Rahimpour MR (2017) 4—Light olefins/bio-gasoline production from biomass. In: Dalena F, Basile A, Rossi C (eds) Bioenergy systems for the future. Woodhead Publishing, Kidlington, pp 87–148

  8. 8.

    Ma J, Shi S, Jia X, Xia F, Ma H, Gao J et al (2019) Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. J Energy Chem 36:74–86

    Article  Google Scholar 

  9. 9.

    Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Kucherov FA, Romashov LV, Galkin KI, Ananikov VP (2018) Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks. ACS Sustain Chem Eng 6(7):8064–8092

    CAS  Article  Google Scholar 

  11. 11.

    Iris K, Tsang DC (2017) Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms. Biores Technol 238:716–732

    Article  CAS  Google Scholar 

  12. 12.

    Hu X, Gholizadeh M (2019) Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage. J Energy Chem 39:109–143

    Article  Google Scholar 

  13. 13.

    Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P et al (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206

    CAS  Article  Google Scholar 

  14. 14.

    Kumar B, Bhardwaj N, Agrawal K, Chaturvedi V, Verma P (2020) Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process Technol 199:106244

    CAS  Article  Google Scholar 

  15. 15.

    Chen X, Che Q, Li S, Liu Z, Yang H, Chen Y et al (2019) Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield. Fuel Process Technol 196:106180

    CAS  Article  Google Scholar 

  16. 16.

    Rahman MM, Liu R, Cai J (2018) Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil–a review. Fuel Process Technol 180:32–46

    CAS  Article  Google Scholar 

  17. 17.

    Zhou M, Sharma BK, Li J, Zhao J, Xu J, Jiang J (2019) Catalytic valorization of lignin to liquid fuels over solid acid catalyst assisted by microwave heating. Fuel 239:239–244

    CAS  Article  Google Scholar 

  18. 18.

    Luterbacher J, Alonso DM, Dumesic J (2014) Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem 16(12):4816–4838

    CAS  Article  Google Scholar 

  19. 19.

    Sun Z, Bottari G, Afanasenko A, Stuart MC, Deuss PJ, Fridrich B et al (2018) Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nat Catal 1(1):82–92

    CAS  Article  Google Scholar 

  20. 20.

    Chen C, Jin D, Ouyang X, Zhao L, Qiu X, Wang F (2018) Effect of structural characteristics on the depolymerization of lignin into phenolic monomers. Fuel 223:366–372

    CAS  Article  Google Scholar 

  21. 21.

    Jiang Z, Hu C (2016) Selective extraction and conversion of lignin in actual biomass to monophenols: a review. J Energy Chem 25(6):947–956

    Article  Google Scholar 

  22. 22.

    Si Z, Zhang X, Wang C, Ma L, Dong R (2017) An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds. Catalysts 7(6):169

    Article  CAS  Google Scholar 

  23. 23.

    Yang Y, Lv G, Deng L, Lu B, Li J, Zhang J et al (2017) Renewable aromatic production through hydrodeoxygenation of model bio-oil over mesoporous Ni/SBA-15 and Co/SBA-15. Microporous Mesoporous Mater 250:47–54

    CAS  Article  Google Scholar 

  24. 24.

    Simakova IL, Murzin DY (2016) Transformation of bio-derived acids into fuel-like alkanes via ketonic decarboxylation and hydrodeoxygenation: design of multifunctional catalyst, kinetic and mechanistic aspects. J Energy Chem 25(2):208–224

    Article  Google Scholar 

  25. 25.

    Abhari R, Tomlinson L, Havlik P, Jannasch N (2010) Process for co-producing jet fuel and LPG from renewable sources. Google Patents

  26. 26.

    Saidi M, Jahangiri A (2017) Refinery approach of bio-oils derived from fast pyrolysis of lignin to jet fuel range hydrocarbons: reaction network development for catalytic conversion of cyclohexanone. Chem Eng Res Des 121:393–406

    CAS  Article  Google Scholar 

  27. 27.

    Nakagawa Y, Tamura M, Tomishige K (2019) Recent development of production technology of diesel-and jet-fuel-range hydrocarbons from inedible biomass. Fuel Process Technol 193:404–422

    CAS  Article  Google Scholar 

  28. 28.

    Mosallanejad A, Taghvaei H, Mirsoleimani-azizi SM, Mohammadi A, Rahimpour MR (2017) Plasma upgrading of 4methylanisole: a novel approach for hydrodeoxygenation of bio oil without using a hydrogen source. Chem Eng Res Des 121:113–124

    CAS  Article  Google Scholar 

  29. 29.

    Karkevandi FS, Bakhtyari A, Rahimpour MR, Keshavarz P (2019) Isothermal vapor-liquid equilibrium of binary and ternary systems of anisole, hexane, and toluene and ternary system of methyl tert-butyl ether, hexane, and toluene. Thermochim Acta 682:178413

    Article  CAS  Google Scholar 

  30. 30.

    Gamliel DP, Baillie BP, Augustine E, Hall J, Bollas GM, Valla JA (2018) Nickel impregnated mesoporous USY zeolites for hydrodeoxygenation of anisole. Microporous Mesoporous Mater 261:18–28

    CAS  Article  Google Scholar 

  31. 31.

    Diao X, Ji N, Zheng M, Liu Q, Song C, Huang Y et al (2018) MgFe hydrotalcites-derived layered structure iron molybdenum sulfide catalysts for eugenol hydrodeoxygenation to produce phenolic chemicals. J Energy Chem 27(2):600–610

    Article  Google Scholar 

  32. 32.

    Wang Q, Gupta N, Wen G, Hamid SBA, Su DS (2017) Palladium and carbon synergistically catalyzed room-temperature hydrodeoxygenation (HDO) of vanillyl alcohol–A typical lignin model molecule. J Energy Chem 26(1):8–16

    Article  Google Scholar 

  33. 33.

    Shu R, Li R, Lin B, Wang C, Cheng Z, Chen Y (2020) A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels. Biomass Bioenerg 132:105432

    CAS  Article  Google Scholar 

  34. 34.

    Li X, Chen G, Liu C, Ma W, Yan B, Zhang J (2017) Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: a critical review. Renew Sustain Energy Rev 71:296–308

    CAS  Article  Google Scholar 

  35. 35.

    Zhou M, Wang Y, Wang Y, Xiao G (2015) Catalytic conversion of guaiacol to alcohols for bio-oil upgrading. J Energy Chem 24(4):425–431

    Article  Google Scholar 

  36. 36.

    Saidi M, Rostami P, Rahimpour MR, Gates BC, Raeissi S (2015) Upgrading of lignin-derived bio-oil components catalyzed by pt/γ-Al2O3: kinetics and reaction pathways characterizing conversion of cyclohexanone with H2. Energy Fuels 29(1):191–199

    CAS  Article  Google Scholar 

  37. 37.

    Nimmanwudipong T, Runnebaum RC, Tay K, Block DE, Gates BC (2011) Cyclohexanone conversion catalyzed by Pt/γ-Al2O3: evidence of oxygen removal and coupling reactions. Catal Lett 141(8):1072

    CAS  Article  Google Scholar 

  38. 38.

    Runnebaum RC, Nimmanwudipong T, Block DE, Gates BC (2012) Catalytic conversion of compounds representative of lignin-derived bio-oils: a reaction network for guaiacol, anisole, 4-methylanisole, and cyclohexanone conversion catalysed by Pt/γ-Al2O3. Catal Sci Technol 2(1):113–118

    CAS  Article  Google Scholar 

  39. 39.

    Saidi M, Rostami P, Rahimpour MR, Gates BC, Raeissi S (2014) Upgrading of lignin-derived bio-oil components catalyzed by pt/γ-Al2O3: kinetics and reaction pathways characterizing conversion of cyclohexanone with H2. Energy Fuels 29(1):191–199

    Article  CAS  Google Scholar 

  40. 40.

    Bakhtyari A, Rahimpour MR, Raeissi S (2020) Cobalt-molybdenum catalysts for the hydrodeoxygenation of cyclohexanone. Renew Energy 150:443–455

    CAS  Article  Google Scholar 

  41. 41.

    Bakhtyari A, Sakhayi A, Rahimpour MR, Raeissi S (2020) The utilization of synthesis gas for the deoxygenation of cyclohexanone over alumina-supported catalysts: screening catalysts. Asia-Pac J Chem Eng 15:e2425

    CAS  Article  Google Scholar 

  42. 42.

    Bakhtyari A, Sakhayi A, Rahimpour MR, Raeissi S (2020) Upgrading of cyclohexanone to hydrocarbons by hydrodeoxygenation over nickel–molybdenum catalysts. Int J Hydrog Energy 45:11062–11076

    CAS  Article  Google Scholar 

  43. 43.

    Taghvaei H, Bakhtyari A, Reza Rahimpour M (2020) Carbon nanotube supported nickel catalysts for anisole and cyclohexanone conversion in the presence of hydrogen and synthesis gas: effect of plasma, acid, and thermal functionalization. Fuel 288:119698

    Article  CAS  Google Scholar 

  44. 44.

    Alvarez F, Ribeiro FR, Guisnet M (1994) Transformation of cyclohexanone on PtHZSM5 catalysts—reaction scheme. J Mol Catal 92(1):67–79

    CAS  Article  Google Scholar 

  45. 45.

    Silva A, Alvarez F, Ribeiro FR, Guisnet M (2000) Synthesis of cyclohexylcyclohexanone on bifunctional Pd faujasites: influence of the balance between the acidity and the metallic function. Catal Today 60(3–4):311–317

    CAS  Article  Google Scholar 

  46. 46.

    Olivas A, Samano E, Fuentes S (2001) Hydrogenation of cyclohexanone on nickel–tungsten sulfide catalysts. Appl Catal A 220(1–2):279–285

    CAS  Article  Google Scholar 

  47. 47.

    Prasomsri T, Nimmanwudipong T, Román-Leshkov Y (2013) Effective hydrodeoxygenation of biomass-derived oxygenates into unsaturated hydrocarbons by MoO3 using low H2 pressures. Energy Environ Sci 6(6):1732–1738

    CAS  Article  Google Scholar 

  48. 48.

    Kong X, Lai W, Tian J, Li Y, Yan X, Chen L (2013) Efficient hydrodeoxygenation of aliphatic ketones over an alkali-treated Ni/HZSM-5 Catalyst. ChemCatChem 5(7):2009–2014

    CAS  Article  Google Scholar 

  49. 49.

    Du X, Kong X, Chen L (2014) Influence of binder on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone. Catal Commun 45:109–113

    CAS  Article  Google Scholar 

  50. 50.

    Kong X, Liu J (2014) Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone. PLoS ONE 9(7):e101744

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Rahimpour HR, Saidi M, Rostami P, Gates BC, Rahimpour MR (2016) Experimental investigation on upgrading of lignin-derived bio-oils: kinetic analysis of anisole conversion on sulfided CoMo/Al2O3 catalyst. Int J Chem Kinet 48(11):702–713

    CAS  Article  Google Scholar 

  52. 52.

    Saidi M, Rahimpour HR, Rahzani B, Rostami P, Gates BC, Rahimpour MR (2016) Hydroprocessing of 4-methylanisole as a representative of lignin-derived bio-oils catalyzed by sulphided CoMo/γ-Al2O3: a semi-quantitative reaction network. Can J Chem Eng 94(8):1524–1532

    CAS  Article  Google Scholar 

  53. 53.

    Bui VN, Laurenti D, Afanasiev P, Geantet C (2011) Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: promoting effect of cobalt on HDO selectivity and activity. Appl Catal B 101(3):239–45

    CAS  Article  Google Scholar 

  54. 54.

    Van N, Laurenti D, Delichere P, Geantet C (2011) Hydrodeoxygenation of guaiacol. Part II: support effect for CoMoS catalysts on HDO activity and selectivity. Appl Catal B 101(3–4):246–255

    Google Scholar 

  55. 55.

    Jongerius AL, Jastrzebski R, Bruijnincx PC, Weckhuysen BM (2012) CoMo sulfide-catalyzed hydrodeoxygenation of lignin model compounds: An extended reaction network for the conversion of monomeric and dimeric substrates. J Catal 285(1):315–323

    CAS  Article  Google Scholar 

  56. 56.

    Zhou M, Ye J, Liu P, Xu J, Jiang J (2017) Water-assisted selective hydrodeoxygenation of guaiacol to cyclohexanol over supported Ni and Co bimetallic catalysts. ACS Sustain Chem Eng 5(10):8824–8835

    CAS  Article  Google Scholar 

  57. 57.

    Zhang X, Tang W, Zhang Q, Wang T, Ma L (2018) Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts. Appl Energy 227:73–79

    CAS  Article  Google Scholar 

  58. 58.

    Gonšalves VO, Brunet S, Richard F (2016) Hydrodeoxygenation of cresols over Mo/Al2O3 and CoMo/Al2O3 sulfided catalysts. Catal Lett 146(8):1562–1573

    Article  CAS  Google Scholar 

  59. 59.

    Wang H, Feng M, Yang B (2017) Catalytic hydrodeoxygenation of anisole: an insight into the role of metals in transalkylation reactions in bio-oil upgrading. Green Chem 19(7):1668–1673

    CAS  Article  Google Scholar 

  60. 60.

    He Z, Wang X (2014) Highly selective catalytic hydrodeoxygenation of guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts. Front Chem Sci Eng 8(3):369–377

    CAS  Article  Google Scholar 

  61. 61.

    Rahzani B, Saidi M, Rahimpour HR, Gates BC, Rahimpour MR (2017) Experimental investigation of upgrading of lignin-derived bio-oil component anisole catalyzed by carbon nanotube-supported molybdenum. RSC Adv 7(17):10545–10556

    CAS  Article  Google Scholar 

  62. 62.

    Saidi M, Rahimpour MR, Raeissi S (2015) Upgrading process of 4-methylanisole as a lignin-derived bio-oil catalyzed by Pt/γ-Al2O3: kinetic investigation and reaction network development. Energy Fuels 29(5):3335–3344

    CAS  Article  Google Scholar 

  63. 63.

    Saidi M, Rahzani B, Rahimpour MR (2017) Characterization and catalytic properties of molybdenum supported on nano gamma Al2O3 for upgrading of anisole model compound. Chem Eng J 319:143–154

    CAS  Article  Google Scholar 

  64. 64.

    Saidi M, Rostami P, Rahimpour HR, Roshanfekr Fallah MA, Rahimpour MR, Gates BC et al (2015) Kinetics of upgrading of anisole with hydrogen catalyzed by platinum supported on alumina. Energy Fuels 29(8):4990–4997

    CAS  Article  Google Scholar 

  65. 65.

    Taghvaei H, Rahimpour MR, Bruggeman P (2017) Catalytic hydrodeoxygenation of anisole over nickel supported on plasma treated alumina–silica mixed oxides. RSC Adv 7(49):30990–30998

    CAS  Article  Google Scholar 

  66. 66.

    Zhao C, He J, Lemonidou AA, Li X, Lercher JA (2011) Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. J Catal 280(1):8–16

    CAS  Article  Google Scholar 

  67. 67.

    Huynh TM, Armbruster U, Nguyen LH, Nguyen DA, Martin A (2015) Hydrodeoxygenation of bio-oil on bimetallic catalysts: from model compound to real feed. J Sustain Bioenergy Syst 5(04):151

    CAS  Article  Google Scholar 

  68. 68.

    Wu S-K, Lai P-C, Lin Y-C (2014) Atmospheric hydrodeoxygenation of guaiacol over nickel phosphide catalysts: effect of phosphorus composition. Catal Lett 144(5):878–889

    CAS  Article  Google Scholar 

  69. 69.

    Wu S-K, Lai P-C, Lin Y-C, Wan H-P, Lee H-T, Chang Y-H (2013) Atmospheric hydrodeoxygenation of guaiacol over alumina-, zirconia-, and silica-supported nickel phosphide catalysts. ACS Sustain Chem Eng 1(3):349–358

    CAS  Article  Google Scholar 

  70. 70.

    Shu R, Xu Y, Ma L, Zhang Q, Chen P, Wang T (2017) Synergistic effects of highly active Ni and acid site on the hydrodeoxygenation of syringol. Catal Commun 91:1–5

    CAS  Article  Google Scholar 

  71. 71.

    Demirbas A (2007) Effects of moisture and hydrogen content on the heating value of fuels. Energy Sour Part A 29(7):649–655

    CAS  Article  Google Scholar 

  72. 72.

    Milne T, Brennan A, Glenn BH (1990) Sourcebook of methods of analysis for biomass and biomass conversion processes. Springer, New York

    Google Scholar 

  73. 73.

    Li X, Chai Y, Liu B, Liu H, Li J, Zhao R et al (2014) Hydrodesulfurization of 4,6-dimethyldibenzothiophene over CoMo catalysts supported on γ-alumina with different morphology. Ind Eng Chem Res 53(23):9665–9673

    CAS  Article  Google Scholar 

  74. 74.

    Van Veen JR, Gerkema E, van der Kraan AM, Hendriks PA, Beens H (1992) A 57Co Mössbauer emission spectrometric study of some supported CoMo hydrodesulfurization catalysts. J Catal 133(1):112–123

    Article  Google Scholar 

  75. 75.

    Jiang M, Wang B, Yao Y, Li Z, Ma X, Qin S et al (2013) Effect of sulfidation temperature on CoO–MoO3/γ-Al2O3 catalyst for sulfur-resistant methanation. Catal Sci Technol 3(10):2793–2800

    CAS  Article  Google Scholar 

  76. 76.

    Ibrahim AA, Lin A, Zhang F, AbouZeid KM, El-Shall MS (2017) Palladium nanoparticles supported on a metal-organic framework-partially reduced graphene oxide hybrid for the catalytic hydrodeoxygenation of vanillin as a model for biofuel upgrade reactions. ChemCatChem 9(3):469–480

    CAS  Article  Google Scholar 

  77. 77.

    Saih Y, Nagata M, Funamoto T, Masuyama Y, Segawa K (2005) Ultra deep hydrodesulfurization of dibenzothiophene derivatives over NiMo/TiO2-Al2O3 catalysts. Appl Catal A 295(1):11–22

    CAS  Article  Google Scholar 

  78. 78.

    Behnejad B, Abdouss M, Tavasoli A (2019) Comparison of performance of Ni–Mo/γ-alumina catalyst in HDS and HDN reactions of main distillate fractions. Pet Sci 16:645–656

    CAS  Article  Google Scholar 

  79. 79.

    Yi X, Guo D, Li P, Lian X, Xu Y, Dong Y et al (2017) One pot synthesis of NiMo–Al2O3 catalysts by solvent-free solid-state method for hydrodesulfurization. RSC Adv 7(86):54468–54474

    CAS  Article  Google Scholar 

  80. 80.

    Kaluža L, Palcheva R, Spojakina A, Jirátová K, Tyuliev G (2012) Hydrodesulfurization NiMo catalysts supported on Co, Ni and B modified Al2O3 from Anderson heteropolymolybdates. Procedia Eng 42:873–884

    Article  CAS  Google Scholar 

  81. 81.

    Zhang M-h, Fan J-y, Chi K, Duan A-j, Zhao Z, Meng X-l et al (2017) Synthesis, characterization, and catalytic performance of NiMo catalysts supported on different crystal alumina materials in the hydrodesulfurization of diesel. Fuel Processing Technology 156:446–53

    CAS  Article  Google Scholar 

  82. 82.

    Chen W, Maugé F, van Gestel J, Nie H, Li D, Long X (2013) Effect of modification of the alumina acidity on the properties of supported Mo and CoMo sulfide catalysts. J Catal 304:47–62

    CAS  Article  Google Scholar 

  83. 83.

    Høj M, Linde K, Hansen TK, Brorson M, Jensen AD, Grunwaldt J-D (2011) Flame spray synthesis of CoMo/Al2O3 hydrotreating catalysts. Appl Catal A 397(1–2):201–208

    Article  CAS  Google Scholar 

  84. 84.

    Cordero RL, Llambias FG, Agudo AL (1991) Temperature-programmed reduction and zeta potential studies of the structure ofMo/O3Al2O3 andMo/O3SiO2 catalysts effect of the impregnation pH and molybdenum loading. Appl Catal 74(1):125–136

    Article  Google Scholar 

  85. 85.

    Arnoldy P, Franken M, Scheffer B, Moulijn J (1985) Temperature-programmed reduction of CoO MoO3Al2O3 catalysts. J Catal 96(2):381–395

    CAS  Article  Google Scholar 

  86. 86.

    González-Cortés SL, Xiao T-C, Lin T-W, Green ML (2006) Influence of double promotion on HDS catalysts prepared by urea-matrix combustion synthesis. Appl Catal A 302(2):264–273

    Article  CAS  Google Scholar 

  87. 87.

    Cordero RL, Agudo AL (2000) Effect of water extraction on the surface properties of Mo/Al2O3 and NiMo/Al2O3 hydrotreating catalysts. Appl Catal A 202(1):23–35

    Article  Google Scholar 

  88. 88.

    Rynkowski J, Paryjczak T, Lenik M (1993) On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts. Appl Catal A 106(1):73–82

    CAS  Article  Google Scholar 

  89. 89.

    Scheffer B, Molhoek P, Moulijn J (1989) Temperature-programmed reduction of NiOWO3/Al2O3 hydrodesulphurization catalysts. Appl Catal 46(1):11–30

    CAS  Article  Google Scholar 

  90. 90.

    Brito JL, Laine J (1993) Reducibility of Ni-Mo/Al2O3 catalysts: a TPR study. J Catal 139(2):540–550

    CAS  Article  Google Scholar 

  91. 91.

    Arena F, Dario R, Parmaliana A (1998) A characterization study of the surface acidity of solid catalysts by temperature programmed methods. Appl Catal A 170(1):127–137

    CAS  Article  Google Scholar 

  92. 92.

    Damyanova S, Spojakina A, Jiratova K (1995) Effect of mixed titania-alumina supports on the phase composition of NiMo/TiO2Al2O3 catalysts. Appl Catal A 125(2):257–269

    CAS  Article  Google Scholar 

  93. 93.

    Laine J, Brito J, Severino F (1985) Carbon deposition and hydrodesulfurization activity of nickel-molybdenum supported catalysts. Appl Catal 15(2):333–338

    CAS  Article  Google Scholar 

  94. 94.

    Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57(4):603–619

    CAS  Article  Google Scholar 

  95. 95.

    Campbell ML (2000) Cyclohexane. In: Gerhartz W (ed) Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  96. 96.

    Triwahyono S, Jalil AA, Hamdan H (2006) Isomerisation of cyclohexane to methylcyclopentane over Pt/SO4 2–ZrO2 Catalyst. J Inst Eng Malays 67(1):30–35

    Google Scholar 

  97. 97.

    Wrzyszcz J, Zawadzki M, Trawczyński J, Grabowska H, Miśta W (2001) Some catalytic properties of hydrothermally synthesised zinc aluminate spinel. Appl Catal A 210(1):263–269

    CAS  Article  Google Scholar 

  98. 98.

    Aboul-Gheit AK, Aboul-Fotouh SM, Aboul-Gheit NAK (2005) Hydroconversion of cyclohexene using catalysts containing Pt, Pd, Ir and Re supported on H-ZSM-5 zeolite. Appl Catal A 283(1):157–164

    CAS  Article  Google Scholar 

  99. 99.

    Aboul-Gheit AK, Aboul-Gheit NAK (2006) Iridium/H-ZSM-5 zeolite catalyst promoted via hydrochlorination or hydrofluorination for the hydroconversion of cyclohexene. Appl Catal A 303(2):141–151

    CAS  Article  Google Scholar 

  100. 100.

    Onyestyák G, Pál-Borbély G, Beyer HK (2002) Cyclohexane conversion over H-zeolite supported platinum. Appl Catal A 229(1):65–74

    Article  Google Scholar 

  101. 101.

    Akhmedov VM, Al-Khowaiter SH (2000) Hydroconversion of hydrocarbons over Ru-containing supported catalysts prepared by metal vapor method. Appl Catal A 197(2):201–212

    CAS  Article  Google Scholar 

  102. 102.

    Campbell M (2011) Cyclohexane. In: Chadwick SS (ed) Ullmann's encyclopedia of industrial chemistry. Wiley, Weinheim

  103. 103.

    Folkins HO (2000) Benzene. In: Chadwick SS (ed) Ullmann's encyclopedia of industrial chemistry. Wiley, Weinheim

  104. 104.

    Musser MT (2000) Cyclohexanol and cyclohexanone. In: Chadwick SS (ed) Ullmann's encyclopedia of industrial chemistry. Wiley, Weinheim

  105. 105.

    Weber M, Weber M, Kleine-Boymann M (2004) Phenol. In: Chadwick SS (ed) Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

  106. 106.

    Plotkin JS (2016) What’s new in phenol production. American Chemical Society https://www.acs.org/content/acs/en/pressroom/cutting-edge-chemistry/what-s-new-in-phenol-production-.html. Accessed 10 May 2018

Download references

Acknowledgements

The authors would like to thank Shiraz University for providing research facilities in the completion of the present study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Rahimpour.

Ethics declarations

Conflict of interest

The authors whose names are listed in the manuscript certify that they declare no present and/or future conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 1358 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakhtyari, A., Sakhayi, A., Moravvej, Z. et al. Converting Cyclohexanone to Liquid Fuel-Grade Products: A Characterization and Comparison Study of Hydrotreating Molybdenum Catalysts. Catal Lett (2021). https://doi.org/10.1007/s10562-021-03575-y

Download citation

Keywords

  • Bio-fuel
  • Hydrodeoxygenation
  • Cyclohexene
  • Cyclohexane
  • Heating value
  • Hydrocarbon