Supplementary Mechanism for Oxycarbonylation of Methanol Over CuY Catalyst: Origin of the Oxygen Atom in Methoxyl and Formation of By-Products

Abstract

The reaction network of oxidative carbonylation of methanol (CH3OH) over CuY catalyst prepared by solid-state ion exchange of HY zeolite with CuCl was enriched by combination of in-situ diffuse reflectance infrared fourier transform spectroscopy and mass spectrometric. Based on the proposed mechanism of dimethyl carbonate formation on CuY in literature, this study mainly focused on the origin of the O atom in methoxyl and the reaction pathway for by-products formation. The interaction of the catalyst with different reactants and reactant mixtures (CH3OH, CH318OH, HCHO, O2, CH3OH/HCHO and CH318OH/CO/O2) was studied in detail. It was found that in the presence of CuOx or oxygen, methoxide species are generated by breaking of the O–H bond. Reaction of methoxide species with oxygen leads to the formation of formaldehyde (HCHO), followed by the generation of formate species through consecutive oxidation of HCHO.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

References

  1. 1.

    Tundo P, Selva M (2002) The chemistry of dimethyl carbonate. Acc Chem Res 35:706–716

    CAS  Article  Google Scholar 

  2. 2.

    Shaikh AG, Sivaram S (1996) Organic carbonates. Chem Rev 96:951–976

    CAS  Article  Google Scholar 

  3. 3.

    Ono Y (1997) Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Appl Catal A-Gen 155:133–166

    CAS  Article  Google Scholar 

  4. 4.

    Pacheco MA, Marshall CL (1997) Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuel 11:2–29

    CAS  Article  Google Scholar 

  5. 5.

    Richter M, Fait MJG, Eckelt R et al (2007) Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure. J Catal 245:11–24

    CAS  Article  Google Scholar 

  6. 6.

    Huang S, Yan B, Wang S et al (2015) Recent advances in dialkyl carbonates synthesis and applications. Chem Soc Rev 44:3079–3116

    CAS  Article  Google Scholar 

  7. 7.

    Rebmann G, Keller V, Ledoux MJ et al (2008) Cu–Y zeolite supported on silicon carbide for the vapor phase oxidative carbonylation of methanol to dimethyl carbonate. Green Chem 10:207–213

    CAS  Article  Google Scholar 

  8. 8.

    Anderson SA, Root TW (2003) Kinetic studies of carbonylation of methanol to dimethyl carbonate over Cu+X zeolite catalyst. J Catal 217:396–405

    CAS  Article  Google Scholar 

  9. 9.

    Anderson SA, Root TW (2004) Investigation of the effect of carbon monoxide on the oxidative carbonylation of methanol to dimethyl carbonate over Cu+X and Cu+ZSM-5 zeolites. J Mol Catal A-Chem 220:247–255

    CAS  Article  Google Scholar 

  10. 10.

    Drake IJ, Zhang Y, Briggs D et al (2006) The local environment of Cu+ in Cu−Y zeolite and its relationship to the synthesis of dimethyl carbonate. J Phys Chem B 110:11654–11664

    CAS  Article  Google Scholar 

  11. 11.

    Richter M, Fait MJG, Eckelt R et al (2007) Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure. Appl Catal B-Environ 73:269–281

    CAS  Article  Google Scholar 

  12. 12.

    Huang S, Zhang J, Wang Y et al (2014) Insight into the tunable CuY catalyst for diethyl carbonate by oxycarbonylation: preparation methods and precursors. Ind Eng Chem Res 53:5838–5845

    CAS  Article  Google Scholar 

  13. 13.

    King ST (1996) Reaction mechanism of oxidative carbonylation of methanol to dimethyl carbonate in Cu–Y zeolite. J Catal 161:530–538

    CAS  Article  Google Scholar 

  14. 14.

    King ST (1997) Oxidative carbonylation of methanol to dimethyl carbonate by solid-state ion-exchanged CuY catalysts. Catal Today 33:173–182

    CAS  Article  Google Scholar 

  15. 15.

    Zhang Y, Bell AT (2008) The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y. J Catal 255:153–161

    CAS  Article  Google Scholar 

  16. 16.

    Zheng X, Bell AT (2008) A Theoretical investigation of dimethyl carbonate synthesis on Cu–Y zeolite. J Phys Chem C 112:5043–5047

    CAS  Article  Google Scholar 

  17. 17.

    Engeldinger J, Domke C, Richter M et al (2010) Elucidating the role of Cu species in the oxidative carbonylation of methanol to dimethyl carbonate on CuY: An in situ spectroscopic and catalytic study. Appl Catal A-Gen 382:303–311

    CAS  Article  Google Scholar 

  18. 18.

    Engeldinger J, Richter M, Bentrup U (2012) Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: an operando SSITKA/DRIFTS/MS study. Phys Chem Chem Phys 14:2183–2191

    CAS  Article  Google Scholar 

  19. 19.

    Idriss H, Kim KS, Barteau MA (1992) Surface-dependent pathways for formaldehyde oxidation and reduction on TiO2. Surf Sci 262:113–127

    CAS  Article  Google Scholar 

  20. 20.

    Huang S, Wang Y, Wang Z et al (2012) Cu-doped zeolites for catalytic oxidative carbonylation: The role of Bronsted acids. Appl Catal A-Gen 417–418:236–242

    Article  Google Scholar 

  21. 21.

    Zhang Y, Briggs D, de Smit A et al (2007) Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y, ZSM-5, and Mordenite. J Catal 251:443–452

    CAS  Article  Google Scholar 

  22. 22.

    Novák É, Hancz A, Erdöhelyi A (2003) Methanol adsorption on γ-irradiated SiO2 surface. Radiat Phys Chem 66:27–33

    Article  Google Scholar 

  23. 23.

    Kukulska-Zając E, Datka J (2007) Transformations of formaldehyde molecules in Cu−ZSM-5 zeolites. J Phys Chem C 111:3471–3475

    Article  Google Scholar 

  24. 24.

    Wachs IE, Madix RJ (1978) The selective oxidation of CH3OH to H2CO on a copper (110) catalyst. J Catal 53:208–227

    CAS  Article  Google Scholar 

  25. 25.

    Zhang R, Liu H, Ling L et al (2011) A DFT study on the formation of CH3O on Cu2O(111) surface by CH3OH decomposition in the absence or presence of oxygen. Appl Catal A-Gen 257:4232–4238

    CAS  Google Scholar 

  26. 26.

    Mavrikakis M, Barteau MA (1998) Oxygenate reaction pathways on transition metal surfaces. J Mol Catal A-Chem 131:135–147

    CAS  Article  Google Scholar 

  27. 27.

    Palomino GT, Bordiga S, Zecchina A (2000) XRD, XAS, and IR characterization of copper-exchanged Y zeolite. J Phys Chem B 104:8641–8651

    Article  Google Scholar 

  28. 28.

    Park SJ, Bae I, Nam I et al (2012) Oxidation of formaldehyde over Pd/Beta catalyst. Chem Eng J 195–196:392–402

    Article  Google Scholar 

  29. 29.

    Zhang R, Sun Y, Peng S (2002) In situ FTIR studies of methanol adsorption and dehydrogenation over Cu/SiO2 catalyst. Fuel 81:1619–1624

    CAS  Article  Google Scholar 

  30. 30.

    Lochař V (2006) FT-IR study of methanol, formaldehyde and methyl formate adsorption on the surface of Mo/Sn oxide catalyst. Appl Catal A-Gen 309:33–36

    Article  Google Scholar 

  31. 31.

    Xu B, Zhu T, Tang X et al (2010) Heterogeneous reaction of formaldehyde on the surface of TiO2 particles. Sci China Chem 53:2644–2651

    CAS  Article  Google Scholar 

  32. 32.

    Busca G (1996) Infrared studies of the reactive adsorption of organic molecules over metal oxides and of the mechanisms of their heterogeneously-catalyzed oxidation. Catal Today 27:457–496

    CAS  Article  Google Scholar 

  33. 33.

    Tatibouët JM (1997) Methanol oxidation as a catalytic surface probe. Appl Catal A-Gen 148:213–252

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Natural Science Foundation of China (NSFC) (21406120), the Program of Introducing Talents of Discipline to Universities (BP0618007) and the China Postdoctoral Science Foundation (2019M661021) are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 206 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Chen, P., Wang, M. et al. Supplementary Mechanism for Oxycarbonylation of Methanol Over CuY Catalyst: Origin of the Oxygen Atom in Methoxyl and Formation of By-Products. Catal Lett (2021). https://doi.org/10.1007/s10562-021-03572-1

Download citation

Keywords

  • Methanol
  • Oxidative carbonylation
  • Mechanism
  • CuY
  • In situ DRIFTS