CuW/CeZr Catalysts: A Dual-Function Catalyst for Selective Catalytic Reduction of NO and CO Oxidation Under Oxygen-Rich Conditions

Abstract

In this study, a series of CuW/CeZr (denoted as xCu–yW–CZ hereafter) catalysts with both NO reduction and CO oxidation activity was synthesized by the co-impregnation method, aiming for simultaneous removal of NO and CO under oxygen-rich conditions. Characterizations including N2 adsorption and desorption, XRD, SEM, H2–TPR, and NH3–TPD were used to interpret the influence of WO3/CuO loading amount on catalytic activity. The results suggested that the addition of WO3 species increased the surface acidity of the catalyst while weakening its redox property. On the contrary, the addition of CuO species greatly enhanced the redox property of the catalyst while hardly changing its surface acidity. Notably, too high content CuO was prone to aggregate, which was unfavorable to catalytic activity. Consequently, 5Cu–10W–CZ with 5 wt% CuO and 10 wt% WO3 presented the most optimal catalytic activity because of high components dispersion, appropriate redox property, and surface acidity.

Graphic Abstract

A novel dual-function catalyst (CuW/CeO2–ZrO2) that can simultaneously catalyze NH3–SCR reaction and CO oxidation reaction, was synthesized by the co-impregnation method, aiming for simultaneous removal of NO and CO under oxygen-rich conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Zhang R, Liu N, Lei Z et al (2016) Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts. Chem Rev 116:3658

    CAS  Article  Google Scholar 

  2. 2.

    Oton LF, Oliveira AC, de Araujo JCS et al (2020) Selective catalytic reduction of NOx by CO (CO–SCR) over metal-supported nanoparticles dispersed on porous alumina. Adv Powder Technol 31:464

    CAS  Article  Google Scholar 

  3. 3.

    Zhang Y, Zhao L, Duan J et al (2020) Insights into deNOx processing over Ce-modified Cu–BTC catalysts for the CO–SCR reaction at low temperature by in situ DRIFTS. Sep Purif Technol 234:116081

    CAS  Article  Google Scholar 

  4. 4.

    Roy S, Hegde MS, Madras G (2009) Catalysis for NOx abatement. Appl Energy 86:2283

    CAS  Article  Google Scholar 

  5. 5.

    Iliopoulou EF, Efthimiadis EA, Nalbandian L et al (2005) Ir-based additives for NO reduction and CO oxidation in the FCC regenerator: evaluation, characterization and mechanistic studies. Appl Catal B 60:277

    CAS  Article  Google Scholar 

  6. 6.

    Cheng X, Wang L, Wang Z et al (2016) Catalytic performance of NO reduction by CO over activated semicoke supported Fe/Co catalysts. Ind Eng Chem Res 55:12710

    CAS  Article  Google Scholar 

  7. 7.

    Gholami Z, Luo G (2018) Low-temperature selective catalytic reduction of NO by CO in the presence of O2 over Cu: Ce catalysts supported by multiwalled carbon nanotubes. Ind Eng Chem Res 57:8871

    CAS  Article  Google Scholar 

  8. 8.

    Zhang X, Ma C, Cheng X et al (2017) Performance of Fe-Ba/ZSM-5 catalysts in NO+O2 adsorption and NO+CO reduction. Int J Hydrogen Energy 42:7077

    CAS  Article  Google Scholar 

  9. 9.

    Sierra-Pereira CA, Urquieta-González EA (2014) Reduction of NO with CO on CuO or Fe2O3 catalysts supported on TiO2 in the presence of O2, SO2 and water steam. Fuel 118:137

    CAS  Article  Google Scholar 

  10. 10.

    Li J, Wang S, Zhou L et al (2014) NO reduction by CO over a Fe-based catalyst in FCC regenerator conditions. Chem Eng J 255:126

    CAS  Article  Google Scholar 

  11. 11.

    Gholami Z, Luo G, Gholami F (2020) The influence of support composition on the activity of Cu: Ce catalysts for selective catalytic reduction of NO by CO in the presence of excess oxygen. New J Chem 44:709

    CAS  Article  Google Scholar 

  12. 12.

    Venegas F, López N, Sánchez-Calderón L et al (2019) The transient reduction of NO with CO and naphthalene in the presence of oxygen using a core–shell SmCeO2@TiO2-supported copper catalyst. Catal Sci Technol 9:3408

    CAS  Article  Google Scholar 

  13. 13.

    Chen LF, González G, Wang JA et al (2005) Surfactant-controlled synthesis of Pd/Ce0.6Zr0.4O2 catalyst for NO reduction by CO with excess oxygen. Appl Surf Sci 243:319

    CAS  Article  Google Scholar 

  14. 14.

    Wang JA, Cuan A, Salmones J et al (2004) Studies of sol–gel TiO2 and Pt/TiO2 catalysts for NO reduction by CO in an oxygen-rich condition. Appl Surf Sci 230:94

    CAS  Article  Google Scholar 

  15. 15.

    Han L, Cai S, Gao M et al (2019) Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects. Chem Rev 119:10916

    CAS  Article  Google Scholar 

  16. 16.

    Montini T, Melchionna M, Monai M et al (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987

    CAS  Article  Google Scholar 

  17. 17.

    Peng Y, Li K, Li J (2013) Identification of the active sites on CeO2–WO3 catalysts for SCR of NOx with NH3: an in situ IR and Raman spectroscopy study. Appl Catal B 140–141:483

    Article  Google Scholar 

  18. 18.

    Chen L, Li J, Ablikim W et al (2011) CeO2–WO3 mixed oxides for the selective catalytic reduction of NOx by NH3 over a wide temperature range. Catal Lett 141:1859

    CAS  Article  Google Scholar 

  19. 19.

    Zhan S, Zhang H, Zhang Y et al (2017) Efficient NH3–SCR removal of NOx with highly ordered mesoporous WO3(χ)–CeO2 at low temperatures. Appl Catal B 203:199

    CAS  Article  Google Scholar 

  20. 20.

    Michalow-Mauke KA, Lu Y, Kowalski K et al (2015) Flame-made WO3/CeOx–TiO2 catalysts for selective catalytic reduction of NOx by NH3. ACS Catalsis 5:5657

    CAS  Article  Google Scholar 

  21. 21.

    Liu K, He H, Yu Y et al (2019) Quantitative study of the NH3–SCR pathway and the active site distribution over CeWOx at low temperatures. J Catal 369:372

    CAS  Article  Google Scholar 

  22. 22.

    Li Y, Cheng H, Li D et al (2008) WO3/CeO2–ZrO2, a promising catalyst for selective catalytic reduction (SCR) of NOx with NH3 in diesel exhaust. Chem Commun (Camb) 12:1470

    Article  Google Scholar 

  23. 23.

    Chen A, Yu X, Zhou Y et al (2019) Structure of the catalytically active copper–ceria interfacial perimeter. Nat Catal 2:334

    CAS  Article  Google Scholar 

  24. 24.

    Li L, Han W, Zhang J et al (2016) Controlled pore size of 3D mesoporous Cu–Ce based catalysts and influence of surface textures on the CO catalytic oxidation. Microporous Mesoporous Mater 231:9

    CAS  Article  Google Scholar 

  25. 25.

    Liu L, Yao Z, Deng Y et al (2011) Morphology and crystal-plane effects of nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO. ChemCatChem 3:978

    CAS  Article  Google Scholar 

  26. 26.

    Liu L, Yao Z, Liu B et al (2010) Correlation of structural characteristics with catalytic performance of CuO/CexZr1−xO2 catalysts for NO reduction by CO. J Catal 275:45

    CAS  Article  Google Scholar 

  27. 27.

    Yao X, Gao F, Yu Q et al (2013) NO reduction by CO over CuO–CeO2 catalysts: effect of preparation methods. Catal Sci Technol 3:1355

    CAS  Article  Google Scholar 

  28. 28.

    Chen L, Si Z, Wu X et al (2014) DRIFT study of CuO–CeO2–TiO2 mixed oxides for NOx reduction with NH3 at low temperatures. ACS Appl Mater Interfaces 6:8134

    CAS  Article  Google Scholar 

  29. 29.

    Yao X, Tang C, Ji Z et al (2013) Investigation of the physicochemical properties and catalytic activities of Ce0.67M0.33O2(M = Zr4+, Ti4+, Sn4+) solid solutions for NO removal by CO. Catal Sci Technol 3:688

    CAS  Article  Google Scholar 

  30. 30.

    Arevalo JD, Vargas JC, Córdoba LF (2019) Effect of the presence of CuOx on the catalytic behavior of bimetallic Au–Cu catalyst supported on Ce–Zr mixed oxide in CO preferential oxidation. Ingeniería e Investigación 39:21

    CAS  Article  Google Scholar 

  31. 31.

    AlKhoori AA, Polychronopoulou K, Belabbes A et al (2020) Cu, Sm co-doping effect on the CO oxidation activity of CeO2. A combined experimental and density functional study. Appl Surf Sci 521:146305

    CAS  Article  Google Scholar 

  32. 32.

    Zhang X, Zhang X, Song L et al (2018) Enhanced catalytic performance for CO oxidation and preferential CO oxidation over CuO/CeO2 catalysts synthesized from metal organic framework: effects of preparation methods. Int J Hydrogen Energy 43:18279

    CAS  Article  Google Scholar 

  33. 33.

    Feng X, Zheng Y, Lin D et al (2020) Novel synthetic route to Ce–Cu–W–O microspheres for efficient catalytic oxidation of vinyl chloride emissions. Chin J Catal 41:1864

    CAS  Article  Google Scholar 

  34. 34.

    Cao J-L, Wang Y, Zhang T-Y, Wu S-H, Yuan Z-Y (2008) Preparation, characterization and catalytic behavior of nanostructured mesoporous CuO/Ce0.8Zr0.2O2 catalysts for low-temperature CO oxidation. Appl Catal B Environ 78:120

    CAS  Article  Google Scholar 

  35. 35.

    Guo X, Qiu Z, Mao J et al (2020) Shape-controlled CuxCe1xO2 nanorods catalyst and the active components functioned in selective oxidation of CO in hydrogen-rich stream. J Power Sources 451:227757

    CAS  Article  Google Scholar 

  36. 36.

    Zhang Z, Chen L, Li Z et al (2016) Activity and SO2 resistance of amorphous CeaTiOx catalysts for the selective catalytic reduction of NO with NH3: in situ DRIFT studies. Catal Sci Technol 6:7151

    CAS  Article  Google Scholar 

  37. 37.

    Zimmer P, Tschöpe A, Birringer R (2002) Temperature-programmed reaction spectroscopy of ceria- and Cu/ceria-supported oxide catalyst. J Catal 205:339

    CAS  Article  Google Scholar 

  38. 38.

    Li X, Shen M, Hong X et al (2005) Dispersion and Reduction of Copper Oxide Supported on WO3-Modified Ce0.5Zr0.5O2 Solid Solution. J Phys Chem B 109:3949

    CAS  Article  Google Scholar 

  39. 39.

    Ali S, Chen L, Yuan F et al (2017) Synergistic effect between copper and cerium on the performance of Cux–Ce0.5x–Zr0.5 (x=0.1–0.5) oxides catalysts for selective catalytic reduction of NO with ammonia. Appl Catal B Environ 210:223

    CAS  Article  Google Scholar 

  40. 40.

    Lian Z, Shan W, Wang M et al (2019) The balance of acidity and redox capability over modified CeO2 catalyst for the selective catalytic reduction of NO with NH3. J Environ Sci (China) 79:273

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Dalian National Laboratory Cooperation Fund, Chinese Academy of Sciences (DNL201906).

Author information

Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Hao Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Cheng, H., Zhang, X. et al. CuW/CeZr Catalysts: A Dual-Function Catalyst for Selective Catalytic Reduction of NO and CO Oxidation Under Oxygen-Rich Conditions. Catal Lett (2021). https://doi.org/10.1007/s10562-021-03562-3

Download citation

Keywords

  • SCR
  • NO removal
  • CO removal
  • Ceria-based catalyst
  • Oxygen-rich