Skip to main content
Log in

Ligand and Base Free Synthesis of Biaryls from Aryl Halides in Aqueous Media with Recyclable Ti0.97Pd0.03O1.97 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Facile protocol for the synthesis of biaryls from aryl halides in presence of magnesium metal without prior formation of organometallic intermediate has been exploited. Irrespective of aqueous medium, Ti0.97Pd0.03O1.97 catalyst supports C–C bond formation reaction in presence of metals rather than dehalogenation without any additives. Homocoupling of 16 different aryl halides furnished corresponding biphenyls in good yield with better functional group tolerance. The recovery of the catalyst was carried out by employing catalyst coated cordierite monolith up to 7th cycle with high yields. A new approach for the cross-coupling reaction is also attempted.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1

Similar content being viewed by others

References

  1. Ullmann F, Bielecki J (1901) Ueber Synthesen in der Biphenylreihe. Chem Ber 34:2174–2185

    Article  CAS  Google Scholar 

  2. Hennings D, Iwama T, Rawal VH (1999) Palladium-catalyzed (Ullmann-type) homocoupling of aryl halides: a convenient and general synthesis of symmetrical biaryls via inter- and intramolecular coupling reactions. Org Lett 1:1205–1208

    Article  CAS  Google Scholar 

  3. Alonso F, Riente P, Yus M (2008) Homocoupling of aryl iodides promoted by nickel (0) nanoparticles. Arch Org Chem 4:8–15

    Google Scholar 

  4. Courtois V, Barhdadi R, Troupel M, Perichon J (1997) Electroreductive coupling of organic halides in alcoholic solvents. An example: the electrosynthesis of biaryls catalysed by nickel-2,2′ bipyridine complexes. Tetrahedron 53(34):1569–1576

    Article  Google Scholar 

  5. Tamao K, Sumitani K, Kumada M (1972) Selective carbon-carbon bond formation by cross-coupling of grignard reagents with organic halides. Catalysis by Nickel-Phosphine complexes. J Am Chem Soc 94:4374–4376

    Article  CAS  Google Scholar 

  6. Negishi E, King AO, Okukado N (1977) Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides. J Org Chem 42:1821–1823

    Article  CAS  Google Scholar 

  7. Hatanaka Y, Hiyama T (1988) Cross-coupling of organosilanes with organic halides mediated by palladium catalyst and tris(diethylamino)sulfonium difluorotrimethylsilicate. J Org Chem 53:918–920

    Article  CAS  Google Scholar 

  8. Stille JK (1986) The palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles. Angew Chem Int Ed Engl 25:508–524

    Article  Google Scholar 

  9. Kumada M (1980) Nickel and palladium complex catalyzed cross coupling reactions of organometallic reagents with Organic halides. Pure Appl Chem 52:669–679

    Article  CAS  Google Scholar 

  10. Krasovskiy A, Duplais C, Lipshutz BH (2009) Stereoselective Negishi-like couplings between alkenyl and alkyl halides in water at room temperature. J Am Chem Soc 131:15592–15593

    Article  CAS  Google Scholar 

  11. Bhattacharjya A, Klumphu P, Lipshutz BH (2015) Kumada-Grignard-type biaryl couplings on water. Nat Commun 6:7401

    Article  Google Scholar 

  12. Bera P, Patil KC, Jayaram V, Subbanna GN, Hegde MS (2000) Ionic dispersion of Pt and Pd on CeO2 by combustion method: effect of metal-ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation. J Catal 196:293

    Article  CAS  Google Scholar 

  13. Hegde MS, Patil KC, Madras G (2009) Noble metal ionic catalysts. Acc Chem Res 42:704

    Article  CAS  Google Scholar 

  14. Bera P, Hegde MS (2010) Recent advances in auto exhaust catalysis. J Indian Inst Sci 90:299

    CAS  Google Scholar 

  15. Bera P, Hegde MS (2011) NO reduction over noble metal ionic catalysts. Catal Surv Asia 15:181

    Article  CAS  Google Scholar 

  16. Hedge MS, Bera P (2015) Noble metal ion substituted CeO2 catalysts: electronic interaction between noble metal ions and CeO2 lattice. Catal Today 253:40

    Article  Google Scholar 

  17. Singh P, Hegde MS (2008) Controlled synthesis of nanocrystalline CeO2 and Ce1−xMxO2−δ (M = Zr, Y, Ti, Pr and Fe) solid solutions by the hydrothermal method: structure and oxygen storage capacity. J Solid State Chem 181:3248

    Article  CAS  Google Scholar 

  18. Singh P, Hegde MS, Gopalakrishnan J (2008) Ce2/3Cr1/3O2 + y: a new oxygen storage material based on the fluorite structure. Chem Mater 20:7268

    Article  CAS  Google Scholar 

  19. Singh P, Hegde MS (2009) Ce1−xRuxO2−δ (x = 0.05, 0.10): a new high oxygen storage material and Pt, Pd-free three-way catalyst. Chem Mater 21:3337

    Article  CAS  Google Scholar 

  20. Roy S, Hegde MS, Ravishankar N, Madras G (2007) Creation of redox adsorption sites by Pd2+ ion substitution in nanoTiO2 for high photocatalytic activity of CO oxidation, NO reduction, and NO decomposition. J Phys Chem C 111:8153

    Article  CAS  Google Scholar 

  21. Roy S, Hegde MS, Sharma S, Lalla NP, Marimuthu A, Madras G (2008) Low temperature NOx and N2O reduction by H2: mechanism and development of new nano-catalysts. Appl Catal B 84:341

    Article  CAS  Google Scholar 

  22. Mukri BD, Dutta G, Waghmare UV, Hegde MS (2012) Activation of lattice oxygen of TiO2 by Pd2+ ion: correlation of low-temperature CO and hydrocarbon oxidation with structure of Ti1–xPdxO2–x (x = 0.01–0.03). Chem Mater 24:4491

    Article  CAS  Google Scholar 

  23. Mukri BD, Waghmare UV, Hegde MS (2013) Platinum ion-doped TiO2: high catalytic activity of Pt2+ with oxide ion vacancy in Ti4+1−xPt2+xO2−x compared to Pt4+ without oxide ion vacancy in Ti4+1−xPt4+xO2. Chem Mater 25:3822

    Article  CAS  Google Scholar 

  24. Bhat KS, Prasad DJ, Hegde MS (2019) Recyclable Pd ionic catalyst coated on cordierite monolith for high TOF Heck coupling reaction. J Chem Sci 131(3):20

    Article  Google Scholar 

  25. Bhat KS, Prasanna, Prasad DJ, Hegde MS (2020) Palladium ion catalysed oxidative C-C bond formation reactions in arylboronic acid: application of cordierite monolith coated catalyst. Catal Lett 150:2911–2927

    Article  CAS  Google Scholar 

  26. Bhat KS, Lanke V, Prasad DJ, Prabhu KR (2020) Ligand-free Suzuki coupling reaction with highly recyclable ionic palladium catalyst Ti1−xPdxO2−x (x = 0.03). Appl Catal A Gen 596:117516

    Article  Google Scholar 

  27. Patil KC, Hegde MS, Rattan T, Aruna ST (2008) Chemistry of nanocrystalline oxide materials: combustion synthesis, properties and applications. World Scientific, Singapore

    Book  Google Scholar 

  28. Bera P, Hegde MS (2015) Noble metal ions in CeO2 and TiO2: synthesis, structure and catalytic properties. RSC Adv 5:94949

    Article  CAS  Google Scholar 

  29. Sanjaykumar SR, Mukri BD, Patil S, Madras G, Hegde MS (2011) Recyclable, ligand free palladium(II) catalyst for Heck reaction. J Chem Sci 123:47–54

    Article  CAS  Google Scholar 

  30. Lynch DW, Moorman WJ, Lewis TR, Stober P, Hamlin RD, Schueler RL (1990) Subchronic inhalation of triethylamine vapor in Fischer-344 rats: organ system toxicity. Toxicol Ind Health 6:403–414

    Article  CAS  Google Scholar 

  31. King AO, Okukado N, Negishi E (1977) Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides. J Chem Soc Chem Commun 0:683–684

  32. Huo S (2003) Highly efficient, general procedure for the preparation of alkylzinc reagents from unactivated alkyl bromides and chlorides. Org Lett 5:423–425

    Article  CAS  Google Scholar 

  33. Gosmini C, Ernst CB, Durandetti M (2009) Synthesis of functionalized 2-arylpyridines from 2-halopyridines and various aryl halides via a nickel catalysis. Tetrahedron 65:6141–6146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. M. Usha or M. S. Hegde.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1668 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasanna, Bhat, S.K., Usha, K.M. et al. Ligand and Base Free Synthesis of Biaryls from Aryl Halides in Aqueous Media with Recyclable Ti0.97Pd0.03O1.97 Catalyst. Catal Lett 151, 3313–3322 (2021). https://doi.org/10.1007/s10562-021-03560-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03560-5

Keywords

Navigation