Skip to main content
Log in

Statistical Product Selectivity Modeling and Optimization for γ-Al2O3-Supported Cobalt Catalysts-Based Fischer–Tropsch Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The statistical selectivity models were developed for four different Fischer–Tropsch synthesis product range, including methane (CH4), light olefins (C2=C4), light paraffins (C2–C4), and long-chain hydrocarbons (C5+), based on the experimental data obtained over thirteen γ-Al2O3 supported cobalt-based catalysts with different cobalt particle and pore sizes. The input variables consist of cobalt metal particle size and catalyst pore size. The cubic and quadratic polynomial equations were fitted to the experimental data, however, the mathematical models were subjected to model reduction for the enhancement of model adequacy, which was investigated through ANOVA. The multi-objective optimization revealed that the maximum C5+ selectivity (84.150%) could be achieved at the cobalt particle size and pore sizes of 14.764 and 23.129 nm, respectively, while keeping the selectivity to other hydrocarbon products minimum.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ail SS, Dasappa S (2016) Biomass to liquid transportation fuel via Fischer Tropsch synthesis: technology review and current scenario. Renew Sustain Energy Rev 58:267–286. https://doi.org/10.1016/J.RSER.2015.12.143

    Article  CAS  Google Scholar 

  2. Klerk A, de Li Y, Zennaro R (2013) Fischer-Tropsch technology. In: Maitlis PM, de Klerk A (eds) Greener Fischer-Tropsch processes for fuels and feedstocks, 1st edn. Wiley, New York, pp 53–79

    Chapter  Google Scholar 

  3. Dry ME (2004) Chemical concepts used for engineering purposes. In: Steynberg A, Dry M (eds) Studies in surface sciences and catalysis. Elsevier, New York, pp 196–257

    Google Scholar 

  4. de Klerk A (2011) Fischer-Tropsch synthesis. In: de Klerk A (ed) Fischer-Tropsch refining, 1st edn. Wiley, New York, pp 73–103

    Chapter  Google Scholar 

  5. Khodakov AY, Chu W, Fongarland P (2007) REVIEW Novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107(5):1692–1744. https://doi.org/10.1021/cr050972v

    Article  CAS  PubMed  Google Scholar 

  6. Mahmoudi H, Mahmoudi M, Doustdar O, Jahangiri H, Tsolakis A, Gu S, LechWyszynski M (2017) A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Eng 2:11–31. https://doi.org/10.1515/bfuel-2017-0002

    Article  Google Scholar 

  7. Borg Ø, Eri S, Blekkan EA, Storsæter S, Wigum H, Rytter E, Holmen A (2007) Fischer-Tropsch synthesis over γ-alumina-supported cobalt catalysts: effect of support variables. J Catal 248:89–100. https://doi.org/10.1016/j.jcat.2007.03.008

    Article  CAS  Google Scholar 

  8. Borg Ø, Dietzel PDC, Spjelkavik AI, Tveten EZ, Walmsley JC, Diplas S, Eri S, Holmen A, Rytter E (2008) Fischer-Tropsch synthesis: cobalt particle size and support effects on intrinsic activity and product distribution. J Catal 259:161–164. https://doi.org/10.1016/j.jcat.2008.08.017

    Article  CAS  Google Scholar 

  9. Rane S, Borg Ø, Yang J, Rytter E, Holmen A (2010) Effect of alumina phases on hydrocarbon selectivity in Fischer-Tropsch synthesis. Appl Catal A 388:160–167. https://doi.org/10.1016/j.apcata.2010.08.038

    Article  CAS  Google Scholar 

  10. Rane S, Borg Ø, Rytter E, Holmen A (2012) Relation between hydrocarbon selectivity and cobalt particle size for alumina supported cobalt Fischer-Tropsch catalysts. Appl Catal A 437–438:10–17. https://doi.org/10.1016/j.apcata.2012.06.005

    Article  CAS  Google Scholar 

  11. Xiong H, Zhang Y, Wang S, Li J (2005) Fischer-Tropsch synthesis: the effect of Al2O3 porosity on the performance of Co/Al2O3 catalyst. Catal Commun 6:512–516. https://doi.org/10.1016/j.catcom.2005.04.018

    Article  CAS  Google Scholar 

  12. Borg Ø, Hammer N, Eri S, Lindvåg OA, Myrstad R, Blekkan EA, Rønning M, Rytter E, Holmen A (2009) Fischer-Tropsch synthesis over un-promoted and Re-promoted γ-Al2O3 supported cobalt catalysts with different pore sizes. Catal Today 142:70–77. https://doi.org/10.1016/j.cattod.2009.01.012

    Article  CAS  Google Scholar 

  13. Rytter E, Borg Ø, Tsakoumis NE, Holmen A (2018) Water as key to activity and selectivity in Co Fischer-Tropsch synthesis: y-alumina based structure-performance relationships. J Catal 365:334–343. https://doi.org/10.1016/j.jcat.2018.07.003

    Article  CAS  Google Scholar 

  14. Rytter E, Borg Ø, Enger BC, Holmen A (2019) Α-alumina as catalyst support in Co Fischer-Tropsch synthesis and the effect of added water; encompassing transient effects. J Catal 373:13–24. https://doi.org/10.1016/j.jcat.2019.03.013

    Article  CAS  Google Scholar 

  15. Amirov N, Vakhshouri AR (2020) Numerical modeling and optimization of product selectivity and catalyst activity in Fischer-Tropsch synthesis via response surface methodology: cobalt carbide particle size and H2/CO ratio effects. Int J Hydrogen Energy 45(56):31913–31925. https://doi.org/10.1016/j.ijhydene.2020.08.219

    Article  CAS  Google Scholar 

  16. Ghattavi S, Nezamzadeh-ejhieh A (2020) GC-MASS detection of methyl orange degradation intermediates by AgBr/g-C3N4: experimental design, bandgap study, and characterization of the catalyst. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.06.207

    Article  Google Scholar 

  17. Derikvandi H, Nezamzadeh-ejhieh A (2016) Synergistic effect of p-n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2. J Colloid Interface Sci 490:314–327. https://doi.org/10.1016/j.jcis.2016.11.069

    Article  CAS  PubMed  Google Scholar 

  18. Atashi H, Veiskarami S (2019) Determination of models and optimization for the products of Fischer-Teropsch synthesis on Fe-Mn/K catalyst. Pet Sci Technol 37:1960–1967. https://doi.org/10.1080/10916466.2018.1471503

    Article  CAS  Google Scholar 

  19. Atashi H, Veiskarami S (2018) Green fuel from coal via Fischer-Tropsch process: scenario of optimal condition of process and modelling. Int J Coal Sci Technol 5:230–243. https://doi.org/10.1007/s40789-018-0204-7

    Article  CAS  Google Scholar 

  20. Atashi H, Rezaeian F (2017) Modelling and optimization of Fischer-Tropsch products through iron catalyst in fixed-bed reactor. Int J Hydrogen Energy 42:15497–15506. https://doi.org/10.1016/j.ijhydene.2017.04.224

    Article  CAS  Google Scholar 

  21. Atashi H, Dinarvandi K (2019) Determination of selectivity equations heavy and light product of petroleum on iron based catalysts in Fischer-Tropsch synthesis. Pet Sci Technol 37:2035–2042. https://doi.org/10.1080/10916466.2018.1460610

    Article  CAS  Google Scholar 

  22. Riyahin M, Atashi H, Mohebbi-Kalhori D (2016) Effect of process conditions on Fischer-Tropsch synthesis product selectivity over an industrial iron-based catalyst in slurry reactor. Pet Sci Technol 34:1211–1218. https://doi.org/10.1080/10916466.2016.1193521

    Article  CAS  Google Scholar 

  23. Riyahin M, Mohebbi-Kalhori D, Zohdi-Fasaei H, Mirzaei AA, Atashi H (2020) Proposing innovative modeling for Fischer-Tropsch synthesis product selectivity over cobalt catalyst and skewness analyzing. Pet Sci Technol 38:1–9. https://doi.org/10.1080/10916466.2019.1705859

    Article  CAS  Google Scholar 

  24. Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and products optimization using designed experiments, 3rd edn. Wiley, New York

    Google Scholar 

  25. Support.minitab.com. (2019) Minitab 18 support: Minitab. https://support.minitab.com/en-us/minitab/18/.

  26. Eshraghi F, Nezamzadeh-ejhieh A (2018) EDTA-functionalized clinoptilolite nanoparticles as an effective adsorbent for Pb(II) removal. Environ Sci Pollut Res 25:14043–14056. https://doi.org/10.1007/s11356-018-1461-0

    Article  CAS  Google Scholar 

  27. State-Ease, Inc. (2021) Stat-ease handbook for experimenters. State-Ease Inc, Minneapolis

    Google Scholar 

  28. Omrani N, Nezamzadeh-Ejhieh A (2020) Photodegradation of sulfasalazine over Cu2O-BiVO4-WO3 nano-composite: characterization and experimental design. Int J Hydrog 45:19144–19162. https://doi.org/10.1016/j.ijhydene.2020.05.019

    Article  CAS  Google Scholar 

  29. Tamiji T, Nezamzadeh-Ejhieh A (2018) A comprehensive study on the kinetic aspects and experimental design for the voltammetric response of a Sn(IV)-clinoptilolite carbon paste electrode towards Hg(II). J Electroanal Chem 829:95–105. https://doi.org/10.1016/j.jelechem.2018.10.011

    Article  CAS  Google Scholar 

  30. Xu X, Oosterbeek H, de Bitter JH, van Jong KP, Dillen AJ, Kuipers HPCE, Bezemer GL, Holewijn JE, Kapteijn F (2006) Cobalt particle size effects in the Fischer−Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964. https://doi.org/10.1021/ja058282w

    Article  CAS  PubMed  Google Scholar 

  31. Rytter E, Borg Ø, Tsakoumis NE, Holmen A (2018) Water as key to activity and selectivity in Co Fischer-Tropsch synthesis : γ-alumina based structure-performance relationships. J Catal 365:334–343. https://doi.org/10.1016/j.jcat.2018.07.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurlan Amirov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1302 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirov, N., Vakhshouri, A.R. Statistical Product Selectivity Modeling and Optimization for γ-Al2O3-Supported Cobalt Catalysts-Based Fischer–Tropsch Synthesis. Catal Lett 151, 3273–3286 (2021). https://doi.org/10.1007/s10562-021-03557-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03557-0

Keywords

Navigation