Skip to main content
Log in

CO Hydrogenation to C2 Oxygenates over SiO2 Supported Rh-Based Catalyst: The Effect of pH Value of Impregnation Solution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The synthesis of C2 oxygenates including ethanol directly from coal-derived syngas is significant from both academic and practical points of view and SiO2 supported Rh-based catalysts are very effective for this conversion. However, the high price of Rh requires the improvement of its dispersion to maximize Rh efficiency. The adjustment of impregnation solution pH value can modify effectively the metal dispersion over the support. Herein, we reported the pH effect on catalytic performance of Rh-Mn-Li/SiO2 for CO hydrogenation to C2 oxygenates for the first time. A series of catalysts were prepared from different pH values of impregnation solutions, and were characterized by various techniques. With the increasing of solution pH value above zero point of charge (ZPC) of silica, Rh particle sizes increased with much wider size distribution and reduction of Rh species was restrained over the prepared catalysts owing to the stronger interaction between Rh and support. As a result, the active sites for CO insertion, especially for CO or H2 dissociation was lowered, leading to the depletion of the activity for the formation of C2 oxygenates from CO hydrogenation, and larger Rh particle size with wider size distribution favors the production of long chain hydrocarbons. On the contrary, when the catalyst was prepared using solution with pH below ZPC of silica, the dispersion and the reduction of Rh were promoted due to suitable Rh-support interaction, and in the CO hydrogenation reaction, the space time yield and selectivity of C2 oxygenates reached 679.4 g/kg-cat/h and 73.3%, respectively.

Graphic Abstract

The pH value of impregnating solution regulate the metal-support interaction and thus Rh particle sizes and its reduction, which effects strongly CO hydrogenation activity and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mohanty P, Pant KK, Naik SN et al (2014) Sustain Energy Rev 38:131–153

    Article  CAS  Google Scholar 

  2. Luk HT, Mondelli C, Ferre DC et al (2017) Chem Soc Rev 46:1358–1426

    Article  CAS  PubMed  Google Scholar 

  3. Subramani V, Gangwal SK (2008) Energy Fuels 22:814–839

    Article  CAS  Google Scholar 

  4. Lin T, Qi X, Wang X et al (2019) Angew Chem Int Ed 58:4627–4631

    Article  CAS  Google Scholar 

  5. Kang J, He S, Zhou W et al (2020) Nat Commun 11:827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang C, Zhang J, Qin G et al (2020) Chem 6:646–657

    Article  CAS  Google Scholar 

  7. Ding D, Yu J, Guo Q et al (2017) RSC Adv 7:48420–48428

    Article  CAS  Google Scholar 

  8. Chen W, Ding Y, Jiang D et al (2005) J Nat Gas Chem 14:199–205

    CAS  Google Scholar 

  9. Jiang D, Ding Y, Pan Z et al (2008) Catal Lett 121:241–246

    Article  CAS  Google Scholar 

  10. Xue F, Ding Y, Chen W et al (2015) React Kinet Mech Catal 115:625–634

    Article  CAS  Google Scholar 

  11. Chen W, Song X, Ning L et al (2020) Ind Eng Chem Res 59:18798–18807

    Article  CAS  Google Scholar 

  12. Chen W, Song X, Ning L et al (2020) React Kinet Mech Catal 131:677–690

    Article  CAS  Google Scholar 

  13. Khodakov AY, Chu W, Fongarland P (2017) Chem Rev 107:1692–1744

    Article  CAS  Google Scholar 

  14. Brunelle JP (1978) Pure Appl Chem 50:1211–1229

    Article  CAS  Google Scholar 

  15. Ro I, Xu M, Graham GW et al (2019) ACS Catal 9:10899–10912

    Article  CAS  Google Scholar 

  16. Liu J, Tao R, Guo Z et al (2013) ChemCatChem 5:3665–3672

    Article  CAS  Google Scholar 

  17. Kim MY, Park JH, Shin CH et al (2009) Catal Lett 133:288–297

    Article  CAS  Google Scholar 

  18. Zhu X, Cho H, Pasupong M et al (2013) ACS Catal 3:625–630

    Article  CAS  Google Scholar 

  19. Cheng T, Qiu J, Chen Y et al (2018) New J Chem 42:15639–15647

    Article  CAS  Google Scholar 

  20. Suarez-Toroello VA, Santolalla CE, de los Reyes JA et al (2015) J Mol Catal A 404–405:36–46

    Article  CAS  Google Scholar 

  21. Li H, Cheng S, He Y et al (2019) ChemistrySelect 4:8953–8959

    Article  CAS  Google Scholar 

  22. Ming H, Baker BG (1995) Appl Catal A 123:23–36

    Article  CAS  Google Scholar 

  23. Bae JW, Lee YJ, Park JY et al (2008) Energy Fuels 22:2885–2891

    Article  CAS  Google Scholar 

  24. Zhao H, Zhu T, Chen J et al (2004) Chin J Catal 25:289–292

    CAS  Google Scholar 

  25. Zhu T, Fang K, Chen J et al (2005) J Fuel Chem Technol 33:506–510

    CAS  Google Scholar 

  26. Xing C, Ai P, Zhang P et al (2016) J Energy Chem 25:994–1001

    Article  Google Scholar 

  27. Chen W, Ding Y, Song X et al (2011) Appl Catal A 407:231–237

    Article  CAS  Google Scholar 

  28. Ichikawa M, Fukushima T (1985) J Chem Soc Chem Commun 1985:321–323

    Article  Google Scholar 

  29. Guczi L, Schay Z, Matusek K et al (1986) Appl Catal 22:289–309

    Article  CAS  Google Scholar 

  30. Tago T, Hanaoka T, Dhupatemiya P et al (2000) Catal Lett 64:27–31

    Article  CAS  Google Scholar 

  31. Blanchard P, Lamonier C, Griboval A et al (2007) Appl Catal A 322:33–45

    Article  CAS  Google Scholar 

  32. Guevara-Lara A, Cruz-Perez AE, Contreras-Valdez Z et al (2010) Catal Today 149:288–294

    Article  CAS  Google Scholar 

  33. Boujday S, Lambert JF, Che M (2003) J Phys Chem B 107:651–654

    Article  CAS  Google Scholar 

  34. Ioannides T, Verykios X (1993) J Catal 140:353–369

    Article  CAS  Google Scholar 

  35. Yin H, Ding Y, Luo H et al (2003) Appl Catal A 243:155–164

    Article  CAS  Google Scholar 

  36. Jen HW, Zheng Y, Shriver DF et al (1989) J Catal 116:361–372

    Article  CAS  Google Scholar 

  37. Fujimoto K, Kameyama M, Kunugi T (1980) J Catal 61:7–14

    Article  CAS  Google Scholar 

  38. Brundage MA, Chuang SSC (1998) J Catal 174:164–176

    Article  CAS  Google Scholar 

  39. Gao J, Mo M, Goodwin JG (2009) J Catal 268:142–149

    Article  CAS  Google Scholar 

  40. Chuang SSC, Stevens RW, Khatri R (2005) Top Catal 32:225–232

    Article  CAS  Google Scholar 

  41. Haider MA, Gogate MR, Davis RJ (2009) J Catal 261:9–16

    Article  CAS  Google Scholar 

  42. Dictor R, Roberts S (1989) J Phys Chem 93:2526–2532

    Article  CAS  Google Scholar 

  43. Ekou T, Ekou L, Lafaye G et al (2016) Res Rev J Chem 5:21–27

    CAS  Google Scholar 

  44. Vayssilov GN (2002) N Roesch 124:3783–3786

    CAS  Google Scholar 

  45. Parks GA (1965) Chem Rev 65:177–198

    Article  CAS  Google Scholar 

  46. Parks GA, De Brnyn PL (1962) J Phys Chem 66:967–973

    Article  CAS  Google Scholar 

  47. Schwarz JA (1992) Catal Today 15:395–405

    Article  CAS  Google Scholar 

  48. Schwarz JA, Ugbor CT, Zhang R (1992) J Catal 138:38–54

    Article  CAS  Google Scholar 

  49. Haber J (1981). In: Anderson JR, Boudart M (eds) Catalysis Science and Technology. Springer, Berlin, pp 13–95

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research & Development Program of China (2017YFB0602203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjie Ding.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Song, X., Ning, L. et al. CO Hydrogenation to C2 Oxygenates over SiO2 Supported Rh-Based Catalyst: The Effect of pH Value of Impregnation Solution. Catal Lett 151, 2775–2783 (2021). https://doi.org/10.1007/s10562-021-03533-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03533-8

Keywords

Navigation