Skip to main content
Log in

Ultrasmall and Stable Pd and Pt Nanoparticles Within Zeolite HY Through Impregnated Method with Enhanced Semihydrogenation Selectivity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, with zeolite HY as support, ultrasmall Pd and Pt nanoparticles were successfully immobilized into zeolite HY crystals through an optimized impregnation approach. The success of this new approach mainly relied on the selecting appropriate metal precursor to make Pd and Pt element exists with the cation forms, which can facilitate their diffusion into inner channels of zeolite HY through electrostatic attraction and capillary force. Integration of confinement effect of zeolite HY, taking zeolite HY (Si/Al = 3) encapsulation of ultrasmall Pd NPs (Pd@HY-3) as an instance, Pd@HY-3 catalyst exhibited enhanced catalytic selectivity in semihydrogenation of alkynes, in comparison with Pd/HY, Pd/C, Pd/Al2O3 and lindlar catalysts. This improved catalytic selectivity can be attributed to the constrained upright adsorption conformation of reactant alkyne and corresponding product alkene on encapsulated Pd surface to make alkyne adsorption on Pd surface with larger adsorption energy than that of alkene, thus achieving the high catalytic selectivity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang N, Sun Q, Yu J (2019) Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: a fascinating class of nanocatalysts. Adv Mater 31:1803966

    Article  CAS  Google Scholar 

  2. Limlamthong M, Tesana S, Yip ACK (2020) Metal encapsulation in zeolite particles: a rational design of zeolite-supported catalyst with maximum site activity. Powder Technol Adv. https://doi.org/10.1016/j.apt.2020.01.006

    Article  Google Scholar 

  3. Sun Q, Wang N, Bai R et al (2019) Synergetic effect of ultrasmall metal clusters and zeolites promoting hydrogen generation. Adv Sci 6:1802350

    Article  CAS  Google Scholar 

  4. Luo W, Cao W, Bruijnincx PCA et al (2019) Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules. Green Chem 21:3744–3768

    Article  CAS  Google Scholar 

  5. Wang N, Sun Q, Bai R et al (2016) In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J Am Chem Soc 138:7484–7487

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Hu Z-P, Lv X et al (2020) Ultrasmall PtZn bimetallic nanoclusters encapsulated in silicalite-1 zeolite with superior performance for propane dehydrogenation. J Catal 385:61–69

    Article  CAS  Google Scholar 

  7. Hou Y, Nagamatsu S, Asakura K et al (2018) Trace mono-atomically dispersed rhodium on zeolite-supported cobalt catalyst for the efficient methane oxidation. Commun Chem 1:41

    Article  CAS  Google Scholar 

  8. Wal LI, Jong KP, Zečević J (2019) The origin of metal loading heterogeneities in Pt/zeolite Y bifunctional catalysts. ChemCatChem 11:4081–4088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Liu L, Lopez-Haro M, Lopes CW et al (2019) Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat Mater 18:866–873

    Article  CAS  PubMed  Google Scholar 

  10. Chai Y, Shang W, Li W et al (2019) Noble metal particles confined in zeolites: synthesis, characterization, and applications. Adv Sci 6:1900299

    Article  CAS  Google Scholar 

  11. Saxena S, Singh R, Pala RGS et al (2016) Sinter-resistant gold nanoparticles encapsulated by zeolite nanoshell for oxidation of cyclohexane. RSC Adv 6:8015–8020

    Article  CAS  Google Scholar 

  12. Zhang J, Wang L, Zhang B et al (2018) Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat Catal 1:540–546

    Article  CAS  Google Scholar 

  13. Graaf JD, Dillen AJ, Jong KP et al (2001) Preparation of highly dispersed Pt particles in zeolite Y with a narrow particle size distribution: characterization by hydrogen chemisorption, TEM, EXAFS spectroscopy, and particle modeling. J Catal 203:307–321

    Article  CAS  Google Scholar 

  14. Cai J, Ma H, Zhang J et al (2013) Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions. Chem Eur J 19:14215–14223

    Article  CAS  PubMed  Google Scholar 

  15. Gu J, Zhang Z, Hu P et al (2015) Platinum nanoparticles encapsulated in MFI zeolite crystals by a two-step dry gel conversion method as a highly selective hydrogenation catalyst. ACS Catal 5:6893–6901

    Article  CAS  Google Scholar 

  16. Li S, Burel L, Aquino C et al (2013) Ultimate size control of encapsulated gold nanoparticles. Chem Commun 49:8507–8509

    Article  CAS  Google Scholar 

  17. Li S, Tuel A, Rousset JL et al (2016) Hollow zeolite single-crystals encapsulated alloy nanoparticles with controlled size and composition. ChemNanoMat 2:534–539

    Article  CAS  Google Scholar 

  18. Zhang J, Wang L, Shao Y et al (2017) A Pd@zeolite catalyst for nitroarene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores. Angew Chem Int Ed 56:9747–9751

    Article  CAS  Google Scholar 

  19. Goel S, Wu Z, Zones SI et al (2012) Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J Am Chem Soc 134:17688–17695

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Li L, Yu J (2017) Applications of zeolites in sustainable chemistry. Chem 3:928–949

    Article  CAS  Google Scholar 

  21. Goel S, Zones SI, Iglesia E (2014) Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement. J Am Chem Soc 136:15280–15290

    Article  CAS  PubMed  Google Scholar 

  22. Kosinov N, Liu C, Hensen EJM et al (2018) Engineering of transition metal catalysts confined in zeolites. Chem Mater 30:3177–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Otto T, Zones SI, Iglesia E (2016) Challenges and strategies in the encapsulation and stabilization of monodisperse Au clusters within zeolites. J Catal 339:195–208

    Article  CAS  Google Scholar 

  24. Choi M, Wu Z, Iglesia E (2010) Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J Am Chem Soc 132:9129–9137

    Article  CAS  PubMed  Google Scholar 

  25. Roldán R, Beale AM, Sánchez-Sánchez M et al (2008) Effect of the impregnation order on the nature of metal particles of bi-functional Pt/Pd-supported zeolite beta materials and on their catalytic activity for the hydroisomerization of alkanes. J Catal 254:12–26

    Article  CAS  Google Scholar 

  26. Chen Y-H, Mou C-Y, Wan B-Z (2017) Ultrasmall gold nanoparticles confined in zeolite Y: preparation and activity in CO oxidation. Appl Catal B 218:506–514

    Article  CAS  Google Scholar 

  27. Gerrard LA, Henry PF, Weller MT et al (2004) Structure and ion exchange properties of the natural zeolites edingtonite and goosecreekite. Stud Surf Sci Catal 154:1341–1348

    Article  Google Scholar 

  28. Zhang Z, Sadakane M, Murayama T et al (2014) Preparation, structural characterization, and ion-exchange properties of two new zeolite-like 3D frameworks constructed by ε-Keggin-type polyoxometalates with binding metal ions, H11.4[ZnMo12O40Zn2]1.5– and H7.5[Mn0.2Mo12O40Mn2]2.1–. Inorg Chem 53:7309–7318

    Article  CAS  PubMed  Google Scholar 

  29. Seth J, Prasad BLV (2016) Bromide ion mediated modification to digestive ripening process: preparation of ultra-small Pd, Pt Rh and Ru nanoparticles. Nano Res 9:2007–2017

    Article  CAS  Google Scholar 

  30. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  31. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  33. Mazar MN, Al-Hashimi S, Cococcioni M et al (2013) β-Scission of olefins on acidic zeolites: a periodic PBE-D study in H-ZSM-5. J Phys Chem C 117:23609–23620

    Article  CAS  Google Scholar 

  34. Pulay P (1982) Improved SCF convergence acceleration. J Comput Chem 3:556–560

    Article  CAS  Google Scholar 

  35. Olson DH, Dempsey E (1969) The crystal structure of the zeolite hydrogen faujasite. J Catal 13:221–231

    Article  CAS  Google Scholar 

  36. Umpierre AP, Machado G, Fecher GH et al (2005) Selective hydrogenation of 1,3-butadiene to 1-butene by Pd(0) nanoparticles embedded in imidazolium ionic liquids. Adv Synth Catal 347:1404–1412

    Article  CAS  Google Scholar 

  37. Belykh LB, Skripov NI, Sterenchuk TP et al (2020) Role of phosphorus in the formation of selective palladium catalysts for hydrogenation of alkylanthraquinones. Appl Catal A 589:117293

    Article  CAS  Google Scholar 

  38. Moliner M, Gabay JE, Kliewer CE et al (2016) Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J Am Chem Soc 138:15743–15750

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Yang C, Liu Y et al (2017) Effect of Si/Al ratio on tetralin adsorption on Y zeolite: a DFT study. Mol Simulat 43:945–952

    Article  CAS  Google Scholar 

  40. Liu Y, Li Z, Yu Q et al (2019) A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite. J Am Chem Soc 141:9305–9311

    Article  PubMed  CAS  Google Scholar 

  41. Chen Q, Kang H, Liu X et al (2020) Selective hydrogenation of aromatic ketone over Pt@Y zeolite through restricted adsorption conformation of reactants by zeolitic micropores. ChemCatChem 12:1948–1952

    Article  CAS  Google Scholar 

  42. Chen Q, Wang M, Zhang C et al (2018) Selectivity control on hydrogenation of substituted nitroarenes through end-on adsorption of reactants in zeolite-encapsulated platinum nanoparticles. Chem Asian J 13:2077–2084

    Article  CAS  Google Scholar 

  43. Li X, Wang Z, Zhang Z et al (2017) Construction of Au–Pd alloy shells for enhanced catalytic performance toward alkyne semihydrogenation reactions. Mater Horiz 4:584–590

    Article  CAS  Google Scholar 

  44. Guo R, Chen Q, Li X et al (2019) PdCx nanocrystals with tunable compositions for alkyne semihydrogenation. J Mater Chem A 7:4714–4720

    Article  CAS  Google Scholar 

  45. Maity P, Takano S, Yamazoe S et al (2013) Binding motif of terminal alkynes on gold clusters. J Am Chem Soc 135:9450–9457

    Article  CAS  PubMed  Google Scholar 

  46. Li G, Jin R (2014) Gold nanocluster-catalyzed semihydrogenation: a unique activation pathway for terminal alkynes. J Am Chem Soc 136:11347–11354

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21706204) and China Petroleum & Chemical Corporation (No.119004-2). All calculations were performed with the Material Studios (MS) 2016, a software developed by Biovio company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 822 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Liu, X., Ren, K. et al. Ultrasmall and Stable Pd and Pt Nanoparticles Within Zeolite HY Through Impregnated Method with Enhanced Semihydrogenation Selectivity. Catal Lett 151, 2684–2695 (2021). https://doi.org/10.1007/s10562-020-03523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03523-2

Keywords

Navigation