Skip to main content
Log in

Mesoporous Titania as a Support of Gallium-Based Catalysts for Enhanced Ethane Dehydrogenation Performance

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ethane dehydrogenation (EDH) was carried out over gallium supported on mesoporous TiO2 (Ga/meso-TiO2) catalysts in a temperature range of 500 – 600 °C in the presence and absence of CO2. The Ga/meso-TiO2 catalyst, with high specific surface area of 186.5 m2 g−1, exhibited better catalytic performance compared with gallium supported on bulk TiO2 (Ga/bulk-TiO2), with low specific surface area. The C2H6 conversion increased from 3.1 to 18.0% upon increasing the reaction temperature from 500 to 600 °C in the presence of CO2, respectively. However, the Ga/meso-TiO2 catalyst was rapidly deactivated at 600 °C, attributed to carbonaceous deposition on the surface of the catalyst. The addition of CO2 could not only enhance the C2H6 conversion but also reduce coke formation. The coke deposits could be removed by a regeneration process using O2 flow. After the regeneration, the C2H6 conversion and C2H4 selectivity approximately recovered their initial values.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang LC, Zhang Y, Xu J, Diao W, Karakalos S, Liu B, Song X, Wu W, He T, Ding D (2019) Appl Catal B: Environ 256:117816

    Article  Google Scholar 

  2. Wu Z, Wegener EC, Tseng HT, Gallagher JR, Harris JW, Diaz RE, Ren Y, Ribeiro FH, Miller JT (2016) Catal. Sci Technol 6:6965

    CAS  Google Scholar 

  3. Delgado D, Sanchís R, Cecilia JA, Rodríguez-Castellón E, Caballero A, Solsona B, Lospez Nieto JM (2019) Catal Today 333:10

    Article  CAS  Google Scholar 

  4. Al-Awadi AS, El-Toni AM, Al-Zahrani SM, Abasaeed AE, Alhoshan M, Khan A, Labis JP, Al-Fatesh A (2019) Appl Catal A: General 584:117114

    Article  Google Scholar 

  5. Sattler JJ, Ruiz-Martiner J, Santillan-Jimenez E, Weckhuysen BM (2014) Chem Rev 114:10613

    Article  CAS  Google Scholar 

  6. Bhasin NM, McCain JH, Vora BV, Imai T, Pujadó PR (2001) Appl Catal A: General 221:397

    Article  CAS  Google Scholar 

  7. Cavani F, Ballarini N, Cericola A (2007) Catal Today 127:113

    Article  CAS  Google Scholar 

  8. Michorczyk P, Ogonowski J (2003) Appl Catal A: General 251:425

    Article  CAS  Google Scholar 

  9. Xu B, Li T, Zheng B, Hua W, Yue Y, Gao Z (2007) Catal Lett 119:283

    Article  CAS  Google Scholar 

  10. Seki H, Saito H, Toko K, Hosono Y, Higo T, Seo JG, Maeda S, Hashimoto K, Ogo S, Sekine Y (2019) Appl Catal A: General 581:23

    Article  CAS  Google Scholar 

  11. Shen Z, Liu J, Xu H, Yue Y, Hua W, Shen W (2009) Appl Catal A: General 356:148

    Article  CAS  Google Scholar 

  12. Xiao H, Zhang J, Wang P, Wang X, Pang F, Zhang Z, Tan Y (2016) Catal. Sci Technol 6:5183

    CAS  Google Scholar 

  13. Shao CT, Lang WZ, Yan X, Guo YJ (2017) RSC Adv 7:4710

    Article  CAS  Google Scholar 

  14. Xu B, Zheng B, Hua W, Yue Y, Gao Z (2006) J Catal 239:470

    Article  CAS  Google Scholar 

  15. Koirala R, Buechel R, Krumeiich F, Pratsinis SE, Baiker A (2015) ACS Catal 5:690

    Article  CAS  Google Scholar 

  16. Nakagawa K, Kajit C, Okumura K, Ikenaga N, Nishitani-Gamo M, Ando T, Kobayashi T, Suzuki T (2001) J Catal 203:87

    Article  CAS  Google Scholar 

  17. Wang T, Jiang F, Liu G, Zheng L, Zhao ZJ, Gong JL (2016) AICHE J 62:4365

    Article  CAS  Google Scholar 

  18. Kotanjac ZS, Annaland MV, Kuipers JAM (2010) Chem Engineer Sci 65:441

    Article  CAS  Google Scholar 

  19. Petre AL, Auroux A, Gélin P, Caldararu M, Ionescu NI (2001) Thermochi Acta 379:177

    Article  CAS  Google Scholar 

  20. Lei T, Cheng Y, Miao C, Hua W, Yue Y, Gao Z (2018) Fuel Process Technol 177:246

    Article  CAS  Google Scholar 

  21. Cheng Y, Gong H, Miao C, Hua W, Yue Y, Gao Z (2015) Catal Commu 71:42

    Article  CAS  Google Scholar 

  22. Zhou Z, Orcutt EK, Anderson HC, Stowes KJ (2019) Carbon 152:924

    Article  CAS  Google Scholar 

  23. Liu YM, Cao Y, Yi N, Feng WL, Dai WL, Yan SR, He HY, Fan KN (2004) J Catal 224:417

    Article  CAS  Google Scholar 

  24. Ma F, Chen S, Wang Y, Chen F, Lu WM (2012) Appl Catal A: General 427:145

    Article  Google Scholar 

  25. Capek L, Bulanek R, Adam J, Smolakova L, Sheng-Yang H, Cicmanec C (2009) Catal Today 141:282

    Article  CAS  Google Scholar 

  26. Xie Z, Ren Y, Li J, Zhao Z, Fan X, Liu B, Song W, Kong L, Xiao X, Liu J, Jiang G (2019) J Catal 372:206

    Article  CAS  Google Scholar 

  27. Solsona B, Dejoz A, Garcia T, Concepcion P, Nieto JML, Vazquez MI, Navarro MT (2006) Catal Today 117:228

    Article  CAS  Google Scholar 

  28. Phan TN, Park YK, Lee IG, Ko CH (2017) Appl Catal A: General 544:84

    Article  CAS  Google Scholar 

  29. Wu J, Wang G, Cheng B, Zhou M (2007) Appl Catal B: Environ 69:171

    Article  Google Scholar 

  30. Kruk M, Jaroniec M (2001) Chem Mater 13:3169

    Article  CAS  Google Scholar 

  31. Thommes M (2010) Chem Ing Tech 82:1059

    Article  CAS  Google Scholar 

  32. Zheng B, Hua W, Yue Y, Gao Z (2005) J Catal 232:143

    Article  CAS  Google Scholar 

  33. Wu JL, Chen M, Liu YM, Cao Y, He HY, Fan KN (2013) Catal Comm 30:61

    Article  Google Scholar 

  34. Michorczyk P, Kuśtrowski P, Kolak A, Zimowska M (2013) Catal Commu 35:95

    Article  CAS  Google Scholar 

  35. Wannapakdee W, Yutthalekha T, Dugkhuntod P, Rodponthukwaji K, Thivasasith A, Nokbin S, Witoon T, Pengpanich S, Wattanakit C (2019) Catalysts 9:174

    Article  Google Scholar 

  36. Dewangan N, Ashok J, Sethia M, Das S, Pati S, Kus H, Kawi S (2019) ChemCatChem 11:4923

    Article  CAS  Google Scholar 

  37. Park JL, Canizales KA, Argyle MD, Woodfield BF, Stowers KJ (2020) Micropo Mesopo Mater 293:109799

    Article  CAS  Google Scholar 

  38. Goudarzi E, Asadi E, Darian JT, Kootenaei AS (2019) RSC Adv 9:11797

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by Nano·Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2015M3A7B4050493). This research was also supported through the National Research Foundation of Korea (NRF) (2018R1A2B6007771).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Hyun Ko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, T.N., Kim, HS., Kim, DH. et al. Mesoporous Titania as a Support of Gallium-Based Catalysts for Enhanced Ethane Dehydrogenation Performance. Catal Lett 151, 2748–2761 (2021). https://doi.org/10.1007/s10562-020-03521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03521-4

Keywords

Navigation