Skip to main content

Preparation of α-Terpineol from Biomass Resource Catalysed by Acid Treated Montmorillonite K10

Abstract

A new type of heterogeneous catalyst for hydration of α-pinene was prepared. Montmorillonite K10 was treated by various acids (H2SO4, HCl, HNO3, and ClCH2COOH) and successfully used for the mentioned reaction. The used characterization techniques showed that the acid treatment improved the properties of K10 important for the catalytic activity (SBET and acidity). On the other hand, the morphology and particle size distribution remained the same. Regarding the selectivity (side and consecutive reactions can proceed), the optimal reaction conditions were found (temperature, type of the catalyst, amount of the catalyst, molar ratio α-pinene: water, type of water, solvent). Using the optimal reaction conditions, 60% conversion of α-pinene was achieved with 45% selectivity to α-terpineol (80 °C, 25 wt% of K10/HCl, or K10/H2SO4, nα-pinene:nwater 1:7.5, 1,4-dioxane as a solvent, 24 h). Higher conversions of α-pinene, as well as higher selectivity to α-terpineol, were achieved using all acid treated K10 in comparison to raw K10. Considering the heterogeneous form of prepared catalysts, its availability, low price and easy method of preparation, these catalysts dispose of a large potential for application as catalysts for hydration reactions.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

References

  1. Sales A, de Oliveira FL, Bicas JL (2020) Curr. Opin. Food Sci. 37:98

    Google Scholar 

  2. Yadav MK, Patil MV, Jasra RV (2009) J. Mol. Catal. A: Chem. 297:101–109

    CAS  Article  Google Scholar 

  3. Avila MC, Comelli NA, Firpo NH, Ponzi EN, Ponzi MI (2008) J. Chil. Chem. Soc. 53(1):1460–1462

    CAS  Article  Google Scholar 

  4. Caovilla M, Caovilla A, Pergher SBC, Esmelindro MC, Fernandes C, Dariva C, Bernardo-Gausmao K, Oestreicher EG, Antunes OAC (2008) Catal. Today 133–135:695–698

    Article  Google Scholar 

  5. Tai YN, Xu M, Ren JN, Dong M, Yang ZY, Pan SY, Fan GJ (2016) Sci. Food Agric. 96:954–961

    CAS  Article  Google Scholar 

  6. Donaldson ME, Mestre VL, Vinci D, Liotta CL, Eckert CA (2009) Ind. Eng. Chem. Res. 48:2542–2547

    CAS  Article  Google Scholar 

  7. Frija LMT, Afonso CAM (2012) Tetrahedron 68:7414–7421

    CAS  Article  Google Scholar 

  8. Tsitsishvili V, Ivanova I, Ramishvili T, Kokiashvili N, Bukia T, Dobryakova I, Kurtsikidze G (2017) Bull. Georg. Natl. Acad. Sci. 11(3):79–87

    CAS  Google Scholar 

  9. Yahata K, Sakurai S, Hori S, Yoshioka S, Kaneko Y, Hasegawa K, Akai S (2020) Org. Lett. 22:1199–1203

    CAS  Article  Google Scholar 

  10. Zukowska K, Paczek L, Grela K (2016) ChemCatChem 8:2817–2823

    CAS  Article  Google Scholar 

  11. Comelli N, Avila MC, Volzone C, Ponzi M (2013) Cent. Eur. J. Chem. 11(5):689–697

    CAS  Google Scholar 

  12. Prakoso T, Hanley J, Soebianta MN, Soerawidjaja TH, Indarto A (2018) Catal. Lett. 148(2):725–731

    CAS  Article  Google Scholar 

  13. Román-Aguirre M, De la Torre-Sáenz L, Flores WA, Robau-Sánchez A, Elguézabal AA (2005) Catal. Today 107:310–314

    Article  Google Scholar 

  14. Pakdel H, Sarron S, Roy C (2001) J. Agric. Food Chem. 49(9):4337–4341

    CAS  Article  Google Scholar 

  15. Robles-Dutenhefner PA, da Silva KAH, Siddiqui MR, Kozhevnikov IV, Gusevskaya EV (2001) J. Mol. Catal. A: Chem. 175(1):33–42

    CAS  Article  Google Scholar 

  16. Ávila MC, Ponzi MI, Comelli NA (2015) J. Chromatogr. Sep. Tech. 6(7):1–6

    Google Scholar 

  17. Li L, Liu Y, Yu ST, Liu SW, Xie CX, Liu FS (2013) Res. Chem. Intermed. 41(4):2407–2414

    Article  Google Scholar 

  18. Yuan B, Zhong H, Liu P, Xie C, Liu X, Yu F, Yu S, Zhang J (2016) Catal. Lett. 146(5):929–936

    CAS  Article  Google Scholar 

  19. Liu SW, Yu ST, Liu FS, Xie CX, Li L, Ji KH (2008) J. Mol. Catal. A: Chem. 279(2):177–181

    CAS  Article  Google Scholar 

  20. Vital J, Ramos AM, Silva IF, Valente H, Castanheiro JE (2000) Catal. Today 56(1–3):167–172

    CAS  Article  Google Scholar 

  21. Yadav MK, Patil MV, Jasra RV (2009) J. Mol. Catal. A: Chem. 297(2):101–109

    CAS  Article  Google Scholar 

  22. van der Waal JC, van Bekkum H, Vital JM (1996) J. Mol. Catal. A: Chem. 105:185–192

    Article  Google Scholar 

  23. Mochida T, Ohnishi R, Horita N, Kamiya Y, Okuhara T (2007) Microporous Mesoporous Mater. 101(1):176–183

    CAS  Article  Google Scholar 

  24. Wijayati N, Hidayah N, Mursiti S, Kusumastuti E (2018) IOP Conf. Ser.: Mater. Sci. Eng. 509:012093

    Article  Google Scholar 

  25. Wijayati N, Pranowo HD, Jumina J, Triyono T (2011) Indones. J. Chem. 11(3):234–237

    Article  Google Scholar 

  26. Yang G, Liu Y, Zhou Z, Zhang Z (2011) Chem. Eng. J. 168(1):351–358

    CAS  Article  Google Scholar 

  27. Castanheiro JE, Ramos AM, Fonseca I, Vital J (2003) Catal. Today 82(1–4):187–193

    CAS  Article  Google Scholar 

  28. Castanheiro JE, Fonseca IM, Ramos AM, Oliveira R, Vital J (2005) Catal. Today 104(2–4):296–304

    CAS  Article  Google Scholar 

  29. Vyskočilová E, Gruberová A, Shamzhy M, Vrbková E, Krupka J, Červený L (2018) Reac. Kinet. Mech. Catal. 124(2):711–725

    Article  Google Scholar 

  30. Baishya G, Sarmah B, Hazarika N (2013) Synlett 24(9):1137–1441

    CAS  Article  Google Scholar 

  31. Kornatowski J, Baur WH, Pieper G, Rozwadowski M, Schmitz W, Cichowias A (1992) J. Chem. Soc. Faraday Trans. 88(9):1339–1343

    CAS  Article  Google Scholar 

  32. R. P. Bell, Dissociation Constants. In Aqueous Solution (2020). https://www.britannica.com/science/acid-base-reaction/Dissociation-constants-in-aqueous-solution. Accessed 23 July 2020

  33. Makarouni D, Lycourghiotis S, Kordouli E, Bourikas K, Kordulis C, Dourtoglou V (2018) Appl. Catal. B 224:740–750

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was realized within the Operational Programme Prague – Competitiveness (CZ.2.16/3.1.00/24501) and “National Program of Sustainability” ((NPU I LO1613) MSMT-43760/2015). This work was also supported from the grant of Specific university research – grant No A2_FCHT_2020_008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lada Sekerová.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (PDF 162 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sekerová, L., Černá, H., Vyskočilová, E. et al. Preparation of α-Terpineol from Biomass Resource Catalysed by Acid Treated Montmorillonite K10. Catal Lett 151, 2673–2683 (2021). https://doi.org/10.1007/s10562-020-03514-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03514-3

Keywords

  • α-terpineol
  • Hydration of α-pinene
  • Montmorillonite K10
  • acid treatment
  • heterogeneous catalysis
  • Ion exchange