Skip to main content
Log in

The Synergic Effects of Iron Carbides on Conversion of Syngas to Alkenes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Understanding the relationship between iron carbide phases and their catalytic performance for iron-based Fischer–Tropsch synthesis (FTS) catalysts is crucial to design of excellent FTS catalysts. In order to eliminate the influence of other factors such as promoters, diffusion limitation and metal-inert support interaction, the iron-based catalysts with unpromoted and unsupported structure were developed to investigate the role of iron carbides in the activity and selectivity. Herein, the ratio of iron carbide species was successfully regulated under the same carburization conditions by precisely controlling the degrees of oxidation for iron metal microsphere, and the superior catalytic performance for conversion of CO to alkenes is realized at the optimal ratio of θ-Fe3C/χ-Fe5C2 = 1.5. Combining various characterization techniques, it is found that the synergistic effects of θ-Fe3C and χ-Fe5C2 plays a crucial role in the formation of alkenes. This finding not only provides a newly way to understand the role of iron carbides, but also opens an avenue for designing effective catalysts to the yield of alkenes (especially C5+ alkenes).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhong LS, Yu F, An YL, Zhao YH, Sun YH, Li ZJ, Lin TJ, Lin YJ, Qi XZ, Dai YY, Gu L, Hu JS, Jin SF, Shen Q, Wang H (2016) Nature 538:84–87

    Article  CAS  PubMed  Google Scholar 

  2. Xie J, Paalanen PP, Van DTW, Weckhuysen BM, Louwerse MJ, de Jong KP (2019) Nat Commun 10:167

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jiménez-Barrera E, Bazin P, Lopez-Cartes C, Romero-Sarria F, Daturi M, Odriozola JA (2018) Appl Catal B 237:986–995

    Article  Google Scholar 

  4. Galvis HMT, de Jong KP (2013) ACS Catal 3:2130–2149

    Article  Google Scholar 

  5. Yang C, Zhao B, Gao R, Yao S, Zhai P, Li S, Yu J, Hou YL, Ma D (2017) ACS Catal 7:5661–5667

    Article  CAS  Google Scholar 

  6. Galvis HMT, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP (2012) J Am Chem Soc 134:16207–16215

    Article  Google Scholar 

  7. Yu XF, Zhang JL, Wang X, Ma QX, Gao XH, Xia HQ, Lai XY, Fan S, Zhao TS (2018) Appl Catal B 232:420–428

    Article  CAS  Google Scholar 

  8. de Smit E, Weckhuysen BM (2008) Chem Soc Rev 37:2758–2781

    Article  PubMed  Google Scholar 

  9. Li S, Yang J, Song C, Zhu Q, Xiao D, Ma D (2019) Adv Mater 31:1901796

    Article  CAS  Google Scholar 

  10. de Smit E, Beale AM, Nikitenko S, Weckhuysen BM (2009) J Catal 262:244–256

    Article  Google Scholar 

  11. Wang J, Huang SY, Howard S, Muir BW, Wang HY, Kennedy DF, Ma XB (2019) ACS Catal 9:7976–7983

    Article  CAS  Google Scholar 

  12. Yang C, Zhao HB, Hou YL, Ma D (2012) J Am Chem Soc 134:15814–15821

    Article  CAS  PubMed  Google Scholar 

  13. Cheng Y, Lin J, Xu K, Wang H, Yao X, Pei Y, Yan S, Qiao M, Zong BN (2016) ACS Catal 6:389–399

    Article  CAS  Google Scholar 

  14. Chen B, Wang D, Duan X, Liu W, Li Y, Qian G, Yuan W, Holmen A, Zhou X, Chen D (2018) ACS Catal 8:2709–2714

    Article  CAS  Google Scholar 

  15. Wang P, Chen W, Chiang FK, Dugulan AI, Song YJ, Pestman R, Zhang K, Yao JS, Feng B, Miao P, Miao XW, Hensen EJM (2018) Sci Adv 4:eaau2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma W, Jacobs G, Thomas GA, Shafer WD, Sparks DE, Hamdeh HH, Davis BH (2015) ACS Catal 5:3124–3136

    Article  CAS  Google Scholar 

  17. Wezendonk TA, Santos VP, Nasalevich MA, Warringa QSE, Dugulan AI, Chojecki A, Koeken ACJ, Ruitenbeek M, Meima G, Islam H-U, Sankar G, Makkee M, Kapteijn F, Gascon J (2016) ACS Catal 6:3236–3247

    Article  CAS  Google Scholar 

  18. Xu K, Sun B, Lin J, Wen W, Pei Y, Yan S, Qiao M, Zhang X, Zong BN (2014) Nat Commun 5:1–8

    Google Scholar 

  19. Liu Y, Chen JF, Bao J, Zhang Y (2015) ACS Catal 5:3905–3909

    Article  CAS  Google Scholar 

  20. Chang Q, Li K, Zhang C, Cheruvathur AV, Zheng L, Yang Y, Li YW (2019) ChemCatChem 11:2206–2216

    Article  CAS  Google Scholar 

  21. Chang Q, Zhang CH, Liu CW, Wei YX, Cheruvathur AV, Dugulan AI, Niemantsverdriet JW, Liu XW, He YR, Qing M, Zheng LR, Yun YF, Yang Y, Li YW (2018) ACS Catal 8:3304–3316

    Article  CAS  Google Scholar 

  22. Lee JH, Lee H-K, Chun DH, Choi H, Rhim GB, Youn MH, Jeong H, Kang SW, Yang J, Jung H, Kim CS, Park JC (2019) Nano Res 12:2568–2575

    Article  CAS  Google Scholar 

  23. Liu Y, Lu FX, Tang Y, Liu MY, Tao FF, Zhang Y (2020) Appl Catal B 261:118219

    Article  CAS  Google Scholar 

  24. Wang XZ, Zhang CH, Chang Q, Wang LC, Lv BL, Xu J, Xiang HW, Yang Y, Li YW (2020) Catal Today 343:91–100

    Article  CAS  Google Scholar 

  25. Chen Q, Liu G, Ding S, Sheikh MC, Long D, Yoneyam Y, Tsubaki N (2018) Chem Eng J 334:714–724

    Article  CAS  Google Scholar 

  26. Liu Y, Chen JF, Zhang Y (2015) RSC Adv 5:29002–29007

    Article  CAS  Google Scholar 

  27. Cheng K, Virginie M, Ordomsky VV, Cordier C, Chernavskii PA, Ivantsov MI, Paul S, Wang Y, Khodako AY (2015) J Catal 328:139–150

    Article  CAS  Google Scholar 

  28. Oschatz M, Krause S, Krans NA, Mejia CH, Kaskel S, de Jong KP (2017) Chem Commun 53:10204–10207

    Article  CAS  Google Scholar 

  29. Small BL, Brookhart M (1998) J Am Chem Soc 120:7143–7144

    Article  CAS  Google Scholar 

  30. Skupinska J (1991) Chem Rev 91:613–648

    Article  CAS  Google Scholar 

  31. Lu Y, Yan Q, Han J, Cao B, Street J, Yu F (2017) Fuel 193:369–384

    Article  CAS  Google Scholar 

  32. Zhai P, Xu C, Gao R, Liu X, Li M, Li W, Fu X, Jia C, Xie J, Zhao M, Wang X, Li YW, Zhang Q, Wen XD, Ma D (2016) Angew Chem Int Ed 55:9902–9907

    Article  CAS  Google Scholar 

  33. Wang J, Xu Y, Ma G, Lin J, Wang H, Zhang CH, Ding MY (2018) ACS Appl Mater Inter 10:43578–43587

    Article  CAS  Google Scholar 

  34. Ordomsky VV, Luo Y, Gu B, Carvalho A, Chernavskii PA, Cheng K, Khodakov AY (2017) ACS Catal 7:6445–6452

    Article  CAS  Google Scholar 

  35. Han CW, Choksi T, Milligan C, Majumdar P, Manto M, Cui Y, Sang X, Unocic RR, Zemlyanov D, Wang C, Ribeiro FH, Greeley J, Ortalan V (2017) Nano Lett 17:4576–4582

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Z, Zhang J, Wang X, Si R, Xu J, Han YF (2018) J Catal 365:71–85

    Article  CAS  Google Scholar 

  37. Wei Y, Yan L, Ma C, Zhang C, Sun S, Wen X, Yang Y, Li YW (2020) ACS Appl Nano Mater 3:7182–7191

    Article  CAS  Google Scholar 

  38. Zhu M, Chen J, Shen L, Ford ME, Gao J, Xu J, Wachs IE, Han YF (2020) Appl Catal B 271:118943

    Article  CAS  Google Scholar 

  39. Niu L, Liu X, Wen X, Yang Y, Xu J, Li YW (2020) Catal Today 343:101–111

    Article  CAS  Google Scholar 

  40. Gómez-Quero S, Cárdenas-Lizana F, Keane MA (2013) J Catal 303:41–49

    Article  Google Scholar 

  41. Wang H, Jin B, Wang H, Ma N, Liu W, Weng D, Wu X, Liu S (2018) Appl Catal B 237:251–262

    Article  CAS  Google Scholar 

  42. Ding M, Yang Y, Wu B, Li YW, Wang TJ, Ma LL (2017) Appl Energy 160:982–4989

    Article  Google Scholar 

  43. Zhang YL, Fu DL, Liu XL, Zhang ZP, Zhang C, Shi BF, Xu J, Han YF (2018) ChemCatChem 10:1272–1276

    Article  CAS  Google Scholar 

  44. Tian ZP, Wang CG, Yue J, Zhang XH, Ma LL (2019) Catal Sci Technol 9:2728–2741

    Article  CAS  Google Scholar 

  45. Luo L, Wang M, Cui Y, Chen Z, Wu J, Cao Y, Luo J, Dai Y, Li W, Bao J, Zeng J (2020) Angew Chem Int Ed 59:2–10

    Article  Google Scholar 

  46. Li X, Zhu K, Pang J, Tian M, Liu J, Rykov AI, Zheng M, Wang X, Zhu X, Huang Y, Zhang T (2018) Appl Catal B 224:518–532

    Article  CAS  Google Scholar 

  47. Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H, Sun J (2017) Nat Commun 8:15174

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shi B, Zhang Z, Liu Y, Su J, Liu X, Li X, Wang J, Zh M, Yang Z, Xu J, Han YF (2020) J Catal 381:150–162

    Article  CAS  Google Scholar 

  49. Chen YM, Qiu BC, Liu Y, Zhang Y (2020) Appl Catal B 269:118801

    Article  CAS  Google Scholar 

  50. DeRita L, Dai S, Pham KN, Graham GW, Pan X, Christopher P (2017) J Am Chem Soc 139:14150–14165

    Article  CAS  PubMed  Google Scholar 

  51. Huo C, Li YW, Wang J, Jiao HJ (2009) J Am Chem Soc 131:14713–14721

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of People’s Republic of China (Grant Nos. U20B2022, 91334206). This work was also supported by CNOOC and Synfuels China Technology Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Wu or Yi Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 124 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, F., Chen, X., Wen, L. et al. The Synergic Effects of Iron Carbides on Conversion of Syngas to Alkenes. Catal Lett 151, 2132–2143 (2021). https://doi.org/10.1007/s10562-020-03505-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03505-4

Keywords

Navigation