Adsorption Behavior and Electron Structure Engineering of Pd-IL Catalysts for Selective Hydrogenation of Acetylene

Abstract

Developing the catalytic activity and selectivity of palladium (Pd) catalysts for acetylene hydrogenation is key importance in the chemical industry and remains a challenge to this day. Here, the catalytic performance of Pd catalysts are influenced by the Pd electronic structure, in turn, controlled by different heteroatom doped support. Different catalysts are prepared by ionic liquids (ILs) with different precursors, and catalytic activity of selective hydrogenation of acetylene was investigated. The Pd/NC catalyst exhibits extraordinary conversion, selectivity and stable for the hydrogenation of acetylene (94.6% acetylene conversion with 91.3% selectivity to ethylene). This remarkable catalytic performance of Pd/NC is mainly linked to nitrogen-doped (N-doped) changes the electronic structure of Pd nanoparticles, ensures the rapid desorption of ethylene and prevents the formation of unnecessary ethane by over hydrogenation (demonstrated by XPS and DFT). Our strategy of controlling the electronic structure of Pd can be widely used in the reactions that change the micro electrochemical properties of active metals.

Graphic Abstract

The selective hydrogenation of acetylene to ethylene over Pd/NC with excellent conversion and selectivity is investigated. The doping of nitrogen leads to the unique electronic structure of Pd on the Pd/NC catalyst, which influences the adsorption of ethylene and acetylene, thus promoting its catalytic activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Schbib NS, García MA, Gígola CE, Errazu AF (1996) Kinetics of front-end acetylene hydrogenation in ethylene production. Ind Eng Chem Res 35:1496–1505

    CAS  Article  Google Scholar 

  2. 2.

    Zhou S, Shang L, Zhao Y, Shi R, Waterhouse GIN, Huang YC, Zheng L, Zhang T (2019) Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv Mater 31:1900509

    Article  CAS  Google Scholar 

  3. 3.

    Chan CWA, Mahadi AH, Li MM-J, Corbos EC, Tang C, Jones G, Kuo WCH, Cookson J, Brown CM, Bishop PT (2014) Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation. Nat Commun 5:5787

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Detre TZ, János R, Michael B (2008) Understanding palladium hydrogenation catalysts: when the nature of the reactive molecule controls the nature of the catalyst active phase. Angew Chem Int Ed 47:9274–9278

    Article  CAS  Google Scholar 

  5. 5.

    He Y, Liang L, Liu Y, Feng J, Ma C, Li D (2014) Partial hydrogenation of acetylene using highly stable dispersed bimetallic Pd–Ga/MgO–Al2O3 catalyst. J Catal 309:166–173

    CAS  Article  Google Scholar 

  6. 6.

    Liu Y, Liu X, Feng Q, He D, Li Y (2016) Intermetallic NixMy (M = Ga and Sn) nanocrystals: a non-precious metal catalyst for semi-hydrogenation of alkynes. Adv Mater 28:4747–4754

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Zhou H, Yang X, Li L, Liu X, Zhang T (2015) PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. Acs Catal 6:1054–1061

    Article  CAS  Google Scholar 

  8. 8.

    Pei GX, Liu XY, Wang A, Lee AF, Isaacs MA, Li L, Pan X, Yang X, Wang X, Tai Z, Wilson K, Zhang T (2015) Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. Acs Catal 5:3717–3725

    CAS  Article  Google Scholar 

  9. 9.

    Armbrüster M, Kovnir K, Friedrich M, Teschner D, Wowsnick G, Hahne M, Gille P, Szentmiklósi L, Feuerbacher M, Heggen M, Girgsdies F, Rosenthal D, Schlögl R, Grin Y (2012) Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nat Mater 11:690–693

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  10. 10.

    Liu Y, He Y, Zhou D, Feng J, Li D (2016) Catalytic performance of Pd-promoted Cu hydrotalcite-derived catalysts in partial hydrogenation of acetylene: effect of Pd–Cu alloy formation. Catal Sci Technol 6:3027–3037

    CAS  Article  Google Scholar 

  11. 11.

    Li RF, Wheeler J, Bao JH, Yuan C, Lin W-Y (2016) Gold on carbon and titanium oxides composites: highly efficient and stable acetylene hydrogenation in large excess of ethylene. J Catal 344:194–201

    Article  CAS  Google Scholar 

  12. 12.

    Yang B, Burch R, Hardacre C, Headdock G, Hu P (2012) Origin of the increase of activity and selectivity of nickel doped by Au, Ag, and Cu for acetylene hydrogenation. Acs Catal 2:1027–1032

    CAS  Article  Google Scholar 

  13. 13.

    Köhler D, Heise M, Baranov AI, Luo Y, Geiger D, Ruck M, Armbrüster M (2012) Synthesis of BiRh nanoplates with superior catalytic performance in the semihydrogenation of acetylene. Chem Mater 24:1639–1644

    Article  CAS  Google Scholar 

  14. 14.

    Gianvito V, Davide A, Neyvis AB, Núria L, Javier PR (2016) Advances in the design of nanostructured catalysts for selective hydrogenation. Chemcatchem 8:21–33

    Article  CAS  Google Scholar 

  15. 15.

    Niu Y, Zhang B, Luo J, Zhang L, Chen CM, Su DS (2017) Correlation between microstructure evolution of a well-defined cubic palladium catalyst and selectivity during acetylene hydrogenation. Chemcatchem 9:3435–3439

    CAS  Article  Google Scholar 

  16. 16.

    Moon J, Cheng Y, Daemen LL, Li M, Wu Z (2020) Correlation between microstructure evolution of a well-defined cubic palladium catalyst and selectivity during acetylene hydrogenation. Acs Catal 10:5278–5287

    CAS  Article  Google Scholar 

  17. 17.

    Pei GX, Liu XY, Wang A, Li L, Huang Y, Zhang T, Lee JW, Jang BWL, Mou CY (2014) Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New J Chem 38:2043

    CAS  Article  Google Scholar 

  18. 18.

    Shao L, Zhang DW, Armbrüster DM, Teschner DD, Girgsdies DF, Zhang DB, Timpe DO, Friedrich M, SchlOgl PDR, Su DS (2011) Nanosizing intermetallic compounds onto carbon nanotubes: active and selective hydrogenation catalysts. Angew Chem Int Ed 50:10231–10235

    CAS  Article  Google Scholar 

  19. 19.

    Pei GX, Liu XY, Yang X, Zhang L, Wang A, Li L, Wang H, Wang X, Zhang T (2017) Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. Acs Catal 7:1491–1500

    CAS  Article  Google Scholar 

  20. 20.

    Cao Y, Sui ZJ, Zhu Y, Zhou X, Chen D (2017) Selective hydrogenation of acetylene over Pd-In/Al2O3 catalyst: promotional effect of indium and composition-dependent performance. Acs Catal 7(11):7835–7846

    CAS  Article  Google Scholar 

  21. 21.

    Li R, Yao W, Jin Y, Jia W, Chen X, Chen J, Zheng J, Hu Y, Han D, Zhao J (2018) Selective hydrogenation of acetylene over Pd-In/Al2O3 catalyst: promotional effect of indium and composition-dependent performance. Chem Eng J 351:995–1005

    CAS  Article  Google Scholar 

  22. 22.

    Long B, Tang Y, Li J (2016) New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: supported and doped Au1/RhO2. Nano Res 9:3868–3880

    CAS  Article  Google Scholar 

  23. 23.

    Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier DM, Zhang P, Guo Q, Zang D (2016) Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352:797–800

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Liu J (2017) Catalysis by supported single metal atoms. Acs Catal 7:34–59

    CAS  Article  Google Scholar 

  25. 25.

    Ge J, He D, Chen W, Ju H, Zhang H, Chao T, Wang X, You R, Lin Y, Wang Y, Zhu J, Li H, Xiao B, Huang W, Wu Y, Hong X, Li Y (2016) Atomically dispersed Ru on ultrathin Pd nanoribbons. J Am Chem Soc 138:13850–13853

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Huang F, Deng Y, Chen Y, Cai X, Peng M, Ma D (2018) Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J Am Chem Soc 140:13142–13146

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Tew MW, Janousch M, Huthwelker T, Bokhoven JA (2011) The roles of carbide and hydride in oxide-supported palladium nanoparticles for alkyne hydrogenation. J Catal 283:45–54

    CAS  Article  Google Scholar 

  28. 28.

    Conte M, Carley AF, Heirene C, Willock DJ, Johnston P, Herzing AA, Kiely CJ, Hutchings GJ (2007) Hydrochlorination of acetylene using a supported gold catalyst: a study of the reaction mechanism. J Catal 250:231–239

    CAS  Article  Google Scholar 

  29. 29.

    Conte M, Carley AF, Attard G, Herzing AA, Kiely CJ, Hutchings GJ (2008) Hydrochlorination of acetylene using supported bimetallic Au-based catalysts. J Catal 257:190–198

    CAS  Article  Google Scholar 

  30. 30.

    Conte M, Davies CJ, Morgan DJ, Davies TE, Elias DJ, Carley AF, Johnston P, Hutchings GJ (2013) Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene. J Catal 297:128–136

    CAS  Article  Google Scholar 

  31. 31.

    Wang P, Shi X, Fu C, Li X, Li J, Lv X, Chu Y, Dong F, Jiang G (2020) Strong pyrrolic-N–Pd interactions boost the electrocatalytic hydrodechlorination reaction on palladium nanoparticles. Nanoscale 12:843–850

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Cárdenas-Lizana F, Gómez-Quero S, Perret N, Keane MA (2011) Gold catalysis at the gas–solid interface: role of the support in determining activity and selectivity in the hydrogenation of m-dinitrobenzene. Catal Sci Technol 1:652–661

    Article  CAS  Google Scholar 

  33. 33.

    Lopez-Sanchez JA, Lennon D (2005) The use of titania- and iron oxide-supported gold catalysts for the hydrogenation of propyne. Appl Catal A 291:230–237

    CAS  Article  Google Scholar 

  34. 34.

    Milone C, Ingoglia R, Schipilliti L, Crisafulli C, Neri G, Galvagno S (2005) Selective hydrogenation of α, β-unsaturated ketone to α, β-unsaturated alcohol on gold-supported iron oxide catalysts. J Catal 236:80–90

    CAS  Article  Google Scholar 

  35. 35.

    Radnik J, Mohr C, Claus P (2003) On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis. Phys Chem Chem Phys 5:172–177

    CAS  Article  Google Scholar 

  36. 36.

    Cárdenas-Lizana F, Hao Y, Crespo-Quesada M, Yuranov I, Kiwi-Minsker L (2013) Selective gas phase hydrogenation of p-chloronitrobenzene over Pd catalysts: role of the support. Acs Catal 3:1386–1396

    Article  CAS  Google Scholar 

  37. 37.

    Milone C, Crisafulli C, Ingoglia R, Schipilliti L, Galvagno S (2007) A comparative study on the selective hydrogenation of α, β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts. Catal Today 122:341–351

    CAS  Article  Google Scholar 

  38. 38.

    Yibo W, Jie Y, Rongtian G, Luming P, Xuefeng G, Nianhua X, Yan Z, Weiping D (2018) Crystal-facet effect of γ-Al2O3 on supporting CrOx for catalytic semi-hydrogenation of acetylene. Acs Catal 8:6419–6425

    Article  CAS  Google Scholar 

  39. 39.

    Srinivas G, Burress J, Yildirim T (2012) Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties. Energy Environ Sci 5:6453–6459

    CAS  Article  Google Scholar 

  40. 40.

    Xi J, Xie C, Zhang Y, Wang L, Xiao J, Duan X, Ren J, Xiao F, Wang S (2016) Pd nanoparticles decorated N-doped graphene quantum dots@N-doped carbon hollow nanospheres with high electrochemical sensing performance in cancer detection. ACS Appl Mat Interfaces 8:22563–22573

    CAS  Article  Google Scholar 

  41. 41.

    Nie R, Miao M, Du W, Shi J, Liu Y, Hou Z (2016) Selective hydrogenation of CC bond over N-doped reduced graphene oxides supported Pd catalyst. Appl Catal B 180:607–613

    CAS  Article  Google Scholar 

  42. 42.

    Li R, Zhou Zh, Chen J, Wang S, Zheng J, Chu C, Zhao J, Fan HJ, Han D (2019) The improved hydrodechlorination catalytic reactions by concerted efforts of ionic liquid and activated carbon support. New J Chem 43:6659–6665

    CAS  Article  Google Scholar 

  43. 43.

    Wang B, Zhao J, Yue Y, Sheng G, Lai H, Rui J, He H, Hu Z, Feng F, Zhang Q, Guo L, Li X (2019) Carbon with surface-enriched nitrogen and sulfur supported Au catalysts for acetylene hydrochlorination. Chemcatchem 11:898–898

    CAS  Article  Google Scholar 

  44. 44.

    Zhao J, Wang BL, Yue YX, Sheng GF, Lai HX, Wang SS, Yu L, Zhang QF, Feng F, Hu ZT, Li XN (2019) Nitrogen- and phosphorus-codoped carbon-based catalyst for acetylene hydrochlorination. J Catal 373:240–249

    CAS  Article  Google Scholar 

  45. 45.

    Yue YX, Wang BL, Wang SS, Jin CX, Lu JY, Fang Z, Shao SJ, Pan ZY, Ni J, Zhao J, Li XN (2020) Boron-doped carbon nanodots dispersed on graphitic carbon as high-performance catalysts for acetylene hydrochlorination. Chem Commun 56:5174–5177

    CAS  Article  Google Scholar 

  46. 46.

    Zhang L, Ding Y, Wu KH, Niu Y, Luo J, Yang X, Zhang B, Su D (2017) Pd@C core–shell nanoparticles on carbon nanotubes as highly stable and selective catalysts for hydrogenation of acetylene to ethylene. Nanoscale 9:14317–14321

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Furthmüller GKJ (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  Google Scholar 

  48. 48.

    Hafner GKJ (1994) Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition In germanium. Phys Rev B 49:14251–14269

    Article  Google Scholar 

  49. 49.

    Lai S, Fu C, Chen Y, Yu X, Lai X, Ye C, Hu J (2015) Pt-content-controlled synthesis of Pd nanohollows/Pt nanorods core/shell composites with enhanced electrocatalytic activities for the methanol oxidation reaction. J Power Sources 274:604–610

    CAS  Article  Google Scholar 

  50. 50.

    Luan C, Liu G, Liu Y, Yu L, Wang Y, Xiao Y, Qiao H, Dai X, Zhang X (2018) Structure effects of 2D materials on α-nickel hydroxide for oxygen evolution reaction. ACS Nano 12:3875–3885

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Zhang W, Huang H, Li F, Deng K, Wang X (2014) Palladium nanoparticles supported on graphitic carbon nitride-modified reduced graphene oxide as highly efficient catalysts for formic acid and methanol electrooxidation. J Mater Chem A 2:19084–19094

    CAS  Article  Google Scholar 

  52. 52.

    Zhong X, Qin Y, Chen X, Xu W, Zhuang G, Li X, Wang J (2017) PtPd alloy embedded in nitrogen-rich graphene nanopores: High-performance bifunctional electrocatalysts for hydrogen evolution and oxygen reduction. Carbon 114:740–748

    CAS  Article  Google Scholar 

  53. 53.

    Baer DR, Gaspar DJ, Nachimuthu P (2010) Application of surface chemical analysis tools for characterization of nanoparticles. Anal Bioanal Chem 396:983–1002

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Sun J, Fu Y, He G, Sun X, Wang X (2014) Catalytic hydrogenation of nitrophenols and nitrotoluenes over a palladium/graphene nanocomposite. Catal Sci Technol 4:1742

    CAS  Article  Google Scholar 

  55. 55.

    Zhou X, Zheng L, Li R, Li B, Pillai S, Xu P, Zhang Y (2012) Biotemplated fabrication of size controlled palladium nanoparticle chains. J Mater Chem 22:8862–8867

    CAS  Article  Google Scholar 

  56. 56.

    Li R, Zhao J, Han D, Li X (2017) One-step synthesis of B-doped mesoporous carbon as supports of Pd nanoparticles for liquid phase catalytic hydrodechlorination. Catal Commun 97:116–119

    CAS  Article  Google Scholar 

  57. 57.

    Huang X, Xia Y, Cao Y, Zheng X, Pan H, Zhu J, Ma C, Wang H, Li J, You R, Wei S, Huang W, Lu J (2017) Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res 10:1302–1312

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Nos. 21976129 and 21575097), Science and Technology Plan Project of Taizhou (1803gy01 and 1803gy03), Zhejiang Province Public Welfare Technology Application Research Project (LGF19B050002), Engineering Research Center of Recycling and Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rongrong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1218 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xu, Q., Zhao, B. et al. Adsorption Behavior and Electron Structure Engineering of Pd-IL Catalysts for Selective Hydrogenation of Acetylene. Catal Lett (2021). https://doi.org/10.1007/s10562-020-03485-5

Download citation

Keywords

  • Catalytic performance
  • Palladium catalysts
  • Electronic structure
  • Heteroatom doped
  • Selective hydrogenation