Skip to main content
Log in

Ionic Liquid-Assisted Synthesis of Vanadium Phosphate Catalysts from Phosphorous Acid for Selective Oxidation Reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Vanadium oxyphosphate (VPO) with a high surface area was synthesized in a mixed solvent of ionic liquid [Bmim]Br and water, using phosphorous acid to reduce V5+ to V4+ and as a partial phosphorus source, and V2O5 as the vanadium source. The effects of ionic liquids on the synthesis process were investigated in detail. Using pure water as the solvent, the product was a vanadium phosphate compound with large flakes. With the increase in the amount of ionic liquid, the size of the large flakes of vanadium phosphate gradually decreased, and the morphology was changed to spherical particles. When the proportion of ionic liquid was 80% or the ionic liquid was solely used as the solvent, the VPO showed completely spherical particle morphology, and the specific surface area was the highest. X-ray diffraction analysis showed that the crystal phase of VPO changed from vanadium (IV) hydrogenphosphate hemihydrate (VOHPO4·0.5H2O) to an amorphous state with an increase in ionic liquid ratio. All of the above results show that ionic liquids play an important role in the synthesis of VPO materials. After being calcined in an n-butane/air atmosphere, the precursors were transformed into the vanadium pyrophosphate phase. The active VPO catalysts were used in the selective oxidation of cyclohexanol, and the yield of cyclohexanone was 57.98% for the VPO-80 catalyst synthesized using the ionothermal method but only 21.41% for the VPO-W catalyst synthesized using a traditional hydrothermal method, which shows the advantage of ionic liquid synthesis for VPO catalysts.

Graphic Abstract

Vanadium oxyphosphate material with high surface area was synthesized in the mixed solvent of ionic liquid [Bmim]Br and water. Ionic liquid plays an important role in the morphology and properties of synthesized VPO materials. The active VPO catalysts were used in the selective oxidation of cyclohexanol, and the yield of cyclohexanone was 57.98% for VPO-80 catalyst synthesized by ionothermal method, but only 21.41% for VPO-W catalyst synthesized by traditional hydrothermal method, which exhibited the advantages of ionic liquid synthesis for VPO catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lashier ME, Schrader GL (1991) J Catal 128:113–115

    Article  CAS  Google Scholar 

  2. Liu J, Wang PC, Feng YN, Xu ZJ, Feng XZ, Ji WJ, Au CT (2019) J Catal 374:171–182

    Article  CAS  Google Scholar 

  3. Ivars-Barceló F, Hutchings GJ, Bartley JK, Taylor SH, Sutter P, Amorós P, Sanchis R, Solsona B (2017) J Catal 354:236–249

    Article  Google Scholar 

  4. Hutchings GJ (1991) Appl Catal 72:1–32

    Article  CAS  Google Scholar 

  5. Wang F, Dubois JL, Ueda W (2010) Appl Catal A Gen 376:25–32

    Article  CAS  Google Scholar 

  6. Li GX, Zhang Q, Fang WG, Zhao Y (2015) Energy Environ Focus 4:301–306

    Article  Google Scholar 

  7. Hutchings GJ (2004) J Mater Chem 14:3385–3395

    Article  CAS  Google Scholar 

  8. Cheng MJ, Goddard WA (2013) J Am Chem Soc 135:4600–4603

    Article  CAS  Google Scholar 

  9. Dietl N, Wende T, Chen K, Jiang L, Schlangen M, Zhang X, Asmis KR, Schwarz H (2013) J Am Chem Soc 135:3711–3721

    Article  CAS  Google Scholar 

  10. Schulz C, Roy SC, Wittich K, Naumann d’Alnoncourt R, Linke S, Strempel VE, Frank B, Glaum R, Rosowski F (2019) Catal Today 333:113–119

    Article  CAS  Google Scholar 

  11. He B, Li ZH, Zhang HL, Dai F, Li K, Liu RX, Zhang SJ (2019) Ind Eng Chem Res 58:2857–2867

    Article  CAS  Google Scholar 

  12. Leong LK, Chin KS, Taufiq-Yap YH (2012) Appl Catal A Gen 415–416:53–58

    Article  Google Scholar 

  13. Feng XZ, Yao Y, Su Q, Zhao L, Jiang W, Ji WJ, Au CT (2015) Appl Catal B Environ 164:31–39

    Article  CAS  Google Scholar 

  14. Hutchings GJ, Kiely CJ, Sananesschulz MT, Burrows A, Volta JC (1998) Catal Today 40:273–286

    Article  CAS  Google Scholar 

  15. Feng XZ, Sun B, Yao Y, Su Q, Ji WJ, Au CT (2014) J Catal 314:132–141

    Article  CAS  Google Scholar 

  16. Harrouch-Batis N, Batis H, Ghorbel A, Vedrine JC, Volta JC (1991) J Catal 128:248–263

    Article  Google Scholar 

  17. Hutchings GJ, Sananes MT, Sajip S, Kiely CJ, Burrows A, Ellison IJ, Volt JC (1997) Catal Today 33:161–171

    Article  CAS  Google Scholar 

  18. Carreon MA, Guliants VV, Pierelli F, Cavani F (2004) Catal Lett 92:11–16

    Article  CAS  Google Scholar 

  19. Otaibi RA, Weng WH, Bartley JK, Dummer NF, Kiely CJ, Hutchings GJ (2010) ChemCatChem 2:443–452

    Article  Google Scholar 

  20. Lopez-Sanchez JA, Griesel L, Bartley JK, Wells RPK, Liskowski A, Su DS, Schlögl R, Volta JC, Hutchings GJ (2003) Phys Chem Chem Phys 5:3525–3533

    Article  CAS  Google Scholar 

  21. Cooper ER, Andrews CD, Wheatley PS, Webb PB, Wormald P, Morris RE (2004) Nature 430:1012–1016

    Article  CAS  Google Scholar 

  22. Liu H, Tian ZJ, Wang L, Wang YS, Li DW, Ma HJ, Xu RS (2016) Inorg Chem 55:1809–1815

    Article  CAS  Google Scholar 

  23. Liu L, Yang J, Li JP, Dong JX, Šišak D, Luzzatto M, McCusker LB (2011) Angew Chem Int Ed 50:8139–8142

    Article  CAS  Google Scholar 

  24. Parnham ER, Morris RE (2007) Accounts Chem Res 40:1005–1013

    Article  CAS  Google Scholar 

  25. Zhu HG, Huang JF, Pan ZW, Dai S (2006) Chem Mater 18:4473–4477

    Article  CAS  Google Scholar 

  26. Yang G, Li LH, Wu C, Humphrey MG, Zhang C (2019) Inorg Chem 58:12582–12589

    Article  CAS  Google Scholar 

  27. Wagle DV, Zhao H, Baker GA (2014) Accounts Chem Res 47:2299–2308

    Article  CAS  Google Scholar 

  28. Wang GM, Valldor M, Siebeneichler S, Wilk-Kozubek M, Smetana V, Mudring AV (2019) Inorg Chem 58:13203–13212

    Article  CAS  Google Scholar 

  29. Tan DM, Wang FX, Pietsch T, Grasser MA, Doert T, Ruck M (2019) ACS Appl Energy Mater 2:5140–5145

    Article  CAS  Google Scholar 

  30. Chen D, Liu TT, Wang PY, Zhao JH, Zhang CT, Cheng RL, Li WQ, Ji PX, Pu ZH, Mu SC (2020) ACS Energy Lett 5:2909–2915

    Article  CAS  Google Scholar 

  31. Wang GM, Valldor M, Dorn KV, Wilk-Kozubek M, Smetana V, Mudring AV (2019) Chem Mater 31:7329–7339

    Article  CAS  Google Scholar 

  32. Xue YX, Chen JL, Shao J, Han LQ, Li WL, Sui CH (2020) Mol Catal 492:111010

    Article  CAS  Google Scholar 

  33. Parnham ER, Morris RE (2006) Chem Mater 18:4882–4887

    Article  CAS  Google Scholar 

  34. Mao Y, Duan H, Xu B, Zhang L, Hu YS, Zhao CC, Wang ZX, Chen LQ, Yang YS (2012) Energy Environ Sci 5:7950–7955

    Article  CAS  Google Scholar 

  35. Li XX, Li CQ, Wang RJ, Chen SN, Zhao SJ, Kong XB (2019) Chem Adhes (China) 41:240–269

    Google Scholar 

Download references

Acknowledgements

Financial supports from National Natural Science Foundation of China (Grant No. 21763016) and Industrial Support Program for colleges and universities in Gansu Province (Grant No. 2020C-06) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhang, W., Wang, S. et al. Ionic Liquid-Assisted Synthesis of Vanadium Phosphate Catalysts from Phosphorous Acid for Selective Oxidation Reactions. Catal Lett 151, 2366–2375 (2021). https://doi.org/10.1007/s10562-020-03469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03469-5

Keywords

Navigation