Skip to main content

Advertisement

Log in

Construction of Amorphous CoS/CdS Nanoparticles Heterojunctions for Visible–Light–Driven Photocatalytic H2 Evolution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Due to the poor photocatalytic hydrogen evolution ability of pure CdS, we need to develop a photocatalytic hydrogen evolution catalyst with high activity and no precious metal doping. Therefore, in this article, we used a simple hydrothermal synthesis of CdS nanoparticles, using water as a carrier, loading a small amount of amorphous CoS, by changing the loading ratio of amorphous CoS, synthesized TYPE–II type heterojunction composite catalyst CCS. The successful synthesis of the composite catalyst CCS was verified by XRD, SEM and other characterization methods. UV–vis, PL and other characterization showed that the supported amorphous CoS could significantly improve the photocatalytic activity of CdS, and the photochemical detection also showed that the performance of composite catalyst CCS was better than that of pure CdS. Using Na2S and Na2SO3 mixed solution as electron sacrificial agent, the hydrogen production performance of CCS composite catalyst was determined through hydrogen evolution experiment and cyclic stability experiment. It was found that the sacrificial agent had a great promotion effect on the hydrogen production performance of photocatalyst. It was found that the hydrogen production rate of the composite catalyst could reach 2.01 mmol·g−1·h−1, which was 6.3 times of the pure CdS. This study offers a novel approach for the design of amorphous–based nanostructures as efficient hydrogen evolution cocatalysts.

Graphic Abstract

First, CdS are excited by light, consuming S2− and SO32− ions in the sacrificial agent, generating a large number of electrons and holes. Due to the energy difference between the conducting band (CB) of CdS and amorphous CoS, the electrons are transferred from the surface of CdS to the conducting band (CB) of amorphous CoS, while the electrons obtained from water and H+ in the sacrificial agent are reduced to H2. The amorphous CoS is used as the transfer medium of electron acceptor, and the synergistic effect between heterojunctions is used to improve the charge separation efficiency and electron transfer rate. Therefore, the photocatalytic hydrogen production effect of the composite catalyst CCS–7 has been greatly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jin Z, Li Y, Hao X (2020) Ni, Co-based selenide anchored g-C3N4 for boosting photocatalytic hydrogen evolution. Acta Phys Chim Sin 36:1912033

    Google Scholar 

  2. Yang Q, Peng P, Xiang Z (2017) Covalent organic polymer modified TiO2 nanosheets as highly efficient photocatalysts for hydrogen generation. Chem Eng Sci 162:33–40

    Article  CAS  Google Scholar 

  3. Shen R, Zhang L, Chen X, Jaroniec M, Li N, Li X (2020) Integrating 2D/2D CdS/α-Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic β-NiS nanosheet-based ohmic-junction for efficient photocatalytic H2 evolution. Appl Catal B 266:118619

    Article  CAS  Google Scholar 

  4. Peng J, Shen J, Yu X, Tang H, Liu Q (2021) Construction of LSPR-enhanced 0D/2D CdS/MoO3-x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chin J Catal 42(1):87–96

    Article  CAS  Google Scholar 

  5. Xu J, Huo F, Zhao Y, Liu Y, Yang Q, Cheng Y, Min S, Jin Z, Xiang Z (2018) In-situ La doped Co3O4 as highly efficient photocatalyst for solar hydrogen generation. Int J Hydrog Energ 43(18):8674–8682

    Article  CAS  Google Scholar 

  6. Zhou Z, Peng P, Xiang Z (2018) N-rich covalent organic polymer in situ modified TiO2 for highly efficient photocatalytic hydrogen evolution. Sci Bull 63(6):369–375

    Article  CAS  Google Scholar 

  7. Zhang L, Hao X, Li J, Wang Y, Jin Z (2020) Unique synergistic effects of ZIF-9(Co)-derived cobalt phosphide and CeVO4 heterojunction for efficient hydrogen evolution. Chin J Catal 41(1):82–94

    Article  CAS  Google Scholar 

  8. Zhang L, Hao X, Li Y, Jin Z (2020) Performance of WO3/g-C3N4 heterojunction composite boosting with NiS for photocatalytic hydrogen evolution. Appl Surf Sci 499:143862

    Article  CAS  Google Scholar 

  9. Shen R, Xie J, Xiang Q, Chen X, Jiang J, Li X (2019) Ni-based photocatalytic H2-production cocatalysts2. Chin J Catal 40(3):240–288

    Article  CAS  Google Scholar 

  10. Zhang Z-W, Li Q-H, Qiao X-Q, Hou D, Li D-S (2019) One-pot hydrothermal synthesis of willow branch-shaped MoS2/CdS heterojunctions for photocatalytic H2 production under visible light irradiation. Chin J Catal 40(3):371–379

    Article  CAS  Google Scholar 

  11. Chong B, Chen L, Han D, Wang L, Feng L, Li Q, Li C, Wang W (2019) CdS-modified one-dimensional g-C3N4 porous nanotubes for efficient visible-light photocatalytic conversion. Chin J Catal 40(6):959–968

    Article  CAS  Google Scholar 

  12. Jian Q, Hao X, Jin Z, Ma Q (2020a) Amorphous tungsten phosphosulphide-modified CdS nanorods as a highly efficient electron-cocatalyst for enhanced photocatalytic hydrogen production. Phys Chem Chem Phys 22:1932–1943

    Article  CAS  PubMed  Google Scholar 

  13. Jian Q, Hao X, Jin Z, Ma Q (2020b) Amorphous tungsten phosphosulphide-modified CdS nanorods as a highly efficient electron-cocatalyst for enhanced photocatalytic hydrogen production. Phys Chem Chem Phys 22:1932–1943

    Article  CAS  PubMed  Google Scholar 

  14. Dai K, Hu T, Zhang J, Lu L (2019) Carbon nanotube exfoliated porous reduced graphene oxide/CdS-diethylenetriamine heterojunction for efficient photocatalytic H2 production. Appl Surf Sci 512:144783

    Article  Google Scholar 

  15. Li L-L, Yin X-L, Pang D-H, Du X-X, Xue H, Zhou H-W, Yao Q-X, Wang H-W, Qian J-C, Yang J, Li D-C, Dou J-M (2019) One-pot synthesis of MoS2/CdS nanosphere heterostructures for efficient H2 evolution under visible light irradiation. Int J Hydrog Energ 44(60):31930–31939

    Article  CAS  Google Scholar 

  16. Gai Q, Zheng X, Liu W, Dong Q, Wang Y, Gao R, Ren S (2019) 2D–2D heterostructured CdS–CoP photocatalysts for efficient H2 evolution under visible light irradiation. Int J Hydrog Energ 44(50):27412–27420

    Article  CAS  Google Scholar 

  17. Bao N, Shen L, Takata T, Domen K (2007) Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem Mater 20:110–117

    Article  Google Scholar 

  18. Xiang Q, Cheng B, Yu J (2013) Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Appl Catal B Environ 138:299–303

    Article  Google Scholar 

  19. Yu J, Yu Y, Zhou P, Xiao W, Cheng B (2014) Morphology-dependent photocatalytic H2-production activity of CdS. Appl Catal B Environ 156:184–191

    Article  Google Scholar 

  20. Jin J, Yu J, Liu G, Wong PK (2013) Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. J Mater Chem A 1:10927–10934

    Article  CAS  Google Scholar 

  21. Li C, Yuan J, Han B, Shangguan W (2011) Synthesis and photochemical performance of morphology-controlled CdS photocatalysts for hydrogen evolution under visible light. Int J Hydrog Energ 36:4271–4279

    Article  CAS  Google Scholar 

  22. Zhang Y, Han L, Wang C, Wang W, Ling T, Yang J, Dong C, Lin F, Du X (2017) Zincblende CdS nanocubes with coordinated facets for photocatalytic water splitting. ACS Catal 7:1470–1477

    Article  CAS  Google Scholar 

  23. Lu Y, Cheng X, Tian G, Zhao H, He L, Hu J, Wu S, Dong Y, Chang G, Lenaerts S, Siffert S, Tendeloo GV, Li Z, Xu L, Yang X, Su B (2018) HierarchicalCdS/m-TiO2/G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability. Nano Energ 47:8–17

    Article  CAS  Google Scholar 

  24. Hu Y, Gao X, Yu L, Wang Y, Ning J, Xu S, Lou XW (2013) Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew Chem Int Ed 52:5636–5639

    Article  CAS  Google Scholar 

  25. Ma BJ, Xu HJ, Lin KY, Li J, Zhan HJ, Liu WY, Li C (2016) Mo2C as non-noble metal co-catalyst in Mo2C/CdS composite for enhanced photocatalytic H2 evolution under visible light irradiation. Chem SusChem 9:820–824

    CAS  Google Scholar 

  26. Ma BJ, Liu YH, Li J, Lin KY, Liu WY, Zhan HJ (2016) Mo2N: an efficient non-noblemetal cocatalyst on CdS for enhanced photocatalytic H2 evolution under visible light irradiation. Int J Hydrog Energ 41:22009–22016

    Article  CAS  Google Scholar 

  27. Ma BJ, Wang XY, Lin KY, Li J, Liu YH, Zhan HJ, Liu WY (2017) A novel ultra efficient non-noble metal composite cocatalyst Mo2N/Mo2C/graphene for enhanced photocatalytic H2 evolution. Int J Hydrog Energ 42:18977–18984

    Article  CAS  Google Scholar 

  28. Chao YG, Zheng JF, Zhang HX, Li F, Yan F, Tan YS, Zhua ZP (2018) Oxygen-in corporation in Co2P as a non-noble metal cocatalyst to enhance photocatalysis for reducing water to H2 under visible light. Chem Eng J 346:281–288

    Article  CAS  Google Scholar 

  29. Shen Q, Wang Yi, Xue J, Gao G, Liu X, Jia H, Li Qi, Xu B (2019) The dual effects of RGO films in TiO2/CdSe heterojunction: enhancing photocatalytic activity and improving photocorrosion resistance. Appl Surf Sci 481:1515–1523

    Article  CAS  Google Scholar 

  30. Wang X, Xiang Y, Zhou B, Zhang Y, Wu J, Hu R, Liu L, Song J, Qu J (2019) Enhanced photocatalytic performance of Ag/TiO2 nanohybrid sensitized by black phosphorus nanosheets in visible and near-infrared light. J Colloid Interface Sci 534:1–11

    Article  CAS  PubMed  Google Scholar 

  31. Bahruji H, Bowker M, Davies PR, Pedrono F (2011) New insights into the mechanism of photocatalytic reforming on Pd/TiO2[J]. Appl Catal B 107(1):205–209

    Article  CAS  Google Scholar 

  32. Vamvasakis I, Liu B, Armatas GS (2016) Size effects of platinum nanoparticles in the photocatalytic hydrogen production over 3D mesoporous networks of CdS and Pt nanojunctions. Adv Func Mater 26(44):8062–8071

    Article  CAS  Google Scholar 

  33. Iwashina K, Kudo A (2011) Rh-Doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. J Am Chem Soc 133(34):13272–13275

    Article  CAS  PubMed  Google Scholar 

  34. Yu H, Yuan R, Gao D, Xu Y, Yu J (2019) Ethyl acetate-induced formation of amorphous MoSx nanoclusters for improved H2-evolution activity of TiO2 photocatalyst. Chem Eng J 375:121934

    Article  CAS  Google Scholar 

  35. Xue Y, Min S, Meng J, Liu X, Lei Y, Tian L, Wang F (2019) Light-induced confined growth of amorphous Co doped MoSx nanodots on TiO2 nanoparticles for efficient and stable in situ photocatalytic H2 evolution. Int J Hydrog Energ 44(16):8133–8143

    Article  CAS  Google Scholar 

  36. Liu X, Min S, Xue Y, Lei Y, Chen Y, Wang F, Zhang Z (2019) Accelerating photosensitized H2 evolution over in situ grown amorphous MoSx catalyst employing TiO2 as an efficient catalyst loading matrix and electron transfer relay. Renew Energ 138:562–572

    Article  CAS  Google Scholar 

  37. Li Y, Shen Q, Guan R, Xue J, Liu X, Jia H, Xua B, Wu Y (2020) A C@TiO2 yolk–shell heterostructure for synchronous photothermal–photocatalytic degradation of organic pollutants. J Mater Chem C 8:1025–1040

    Article  CAS  Google Scholar 

  38. Gao J, Shen Q, Guan R, Xue J, Liu X, Jia H, Li Q, Wu Y (2020) Oxygen vacancy self-doped black TiO2 nanotube arrays by aluminothermic reduction for photocatalytic CO2 reduction under visible light illumination. J CO2 Util 35:205–215

    Article  CAS  Google Scholar 

  39. Sun Z-G, Li X-S, Liu J-L, Li Y-C, Zhu B, Zhu A-M (2019) A promising visible-light photocatalyst: H2 plasma-activated amorphous-TiO2-supported Au nanoparticles. J Catal 375:380–388

    Article  CAS  Google Scholar 

  40. Chen F, Luo W, Mo Y, Yu H, Cheng B (2018) In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution. Appl Surf Sci 430:448–456

    Article  CAS  Google Scholar 

  41. Hao X, Hu Y, Cui Z, Zhou J, Wang Y, Zou Z (2019) Self-constructed facet junctions on hexagonal CdS single crystals with high photoactivity and photostability for water splitting. Appl Catal B 244:694–703

    Article  CAS  Google Scholar 

  42. Yu H, Xu J, Yin C, Liu Z, Li Y (2019) Significant improvement of photocatalytic hydrogen evolution rate over g-C3N4 with loading CeO2@Ni4S3. J Solid State Chem 272:102–112

    Article  CAS  Google Scholar 

  43. Xu J, Yu H, Guo H (2018) Synthesis and behaviors of g-C3N4 coupled with LaxCo3-xO4 nanocomposite for improved photocatalytic activeity and stability under visible light. Mater Res Bull 105:342–348

    Article  CAS  Google Scholar 

  44. Mao M, Xu J, Li L, Zhao S, Li X, Li Y, Liu Z (2019) High performance hydrogen production of MoS2-modified perovskite LaNiO3 under visible light. Ionics 10:1–14

    Google Scholar 

  45. Han J-F, Liao C, Cha L-M, Jiang T, Xie H-M, Zhao K, Besland M-P (2014) TEM and XPS studies on CdS/CIGS interfaces. J Phys Chem Solids 75(12):1279–1283

    Article  CAS  Google Scholar 

  46. Hao X, Wang Y, Zhou J, Cui Z, Wang Y, Zou Z (2018) Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for effiffifficient visible-light-driven hydrogen evolution. Appl Catal B Environ 221:302–311

    Article  CAS  Google Scholar 

  47. Guo J, Liang Y, Liu Li, Hu J, Wang H, An W, Cui W (2020) Noble-metal-free CdS/Ni-MOF composites with highly efficient charge separation for photocatalytic H2 evolution. Appl Surf Sci 522:146356

    Article  CAS  Google Scholar 

  48. Sun K, Shen J, Yang Y, Tang H, Lei C (2020) Highly efficient photocatalytic hydrogen evolution from 0D/2D heterojunction of FeP nanoparticles/ CdS nanosheets. Appl Surf Sci 505:144042

    Article  CAS  Google Scholar 

  49. Luo X, Ke Y, Yu L, Wang Y, Homewood KP, Chen X, Gao Y (2020) Tandem CdS/TiO2(B) nanosheet photocatalysts for enhanced H2 evolution. Appl Surf Sci 515:145970

    Article  CAS  Google Scholar 

  50. Yin X-L, Li L-L, Li D-C, Wei D-H, Hu C-C, Dou J-M (2019) Room temperature synthesis of CdS/SrTiO3 nanodots-on-nanocubes for efficient photocatalytic H2 evolution from water. J Colloid Interface Sci 536:694–700

    Article  CAS  PubMed  Google Scholar 

  51. Ren D, Shen R, Jiang Z, Xinyong Lu, Li X (2020) Highly efficient visible-light photocatalytic H2 evolution over 2D–2D CdS/Cu7S4 layered heterojunctions. Chin J Catal 41(1):31–40

    Article  CAS  Google Scholar 

  52. Ren D, Liang Z, Ng YH, Zhang P, Xiang Q, Li X (2020) Strongly coupled 2D–2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution. Chem Eng J 390:124496

    Article  CAS  Google Scholar 

  53. Huang C, Chen C, Zhang M, Lin L, Ye X, Lin S, Antonietti M, Wang X (2015) Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat Commun 6:7698

    Article  PubMed  Google Scholar 

  54. Zhang G, Zang S, Lan ZA, Huang C, Li G, Wang X (2015) Cobalt selenide: a versatile cocatalyst for photocatalytic water oxidation with visible light. J Mater Chem A 3(35):17946–17950

    Article  CAS  Google Scholar 

  55. Zhang G, Huang C, Wang X (2015) Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. Small 11(9–10):1215–1221

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Ningxia Province (NZ17262).

Funding

This work was financially supported by the Open Project of State Key Laboratory of High–efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University (2019-KF-36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu.

Ethics declarations

Conflict of Interest

All authors have no conflict of interest with respect to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1458 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xu, J., Li, L. et al. Construction of Amorphous CoS/CdS Nanoparticles Heterojunctions for Visible–Light–Driven Photocatalytic H2 Evolution. Catal Lett 151, 2408–2419 (2021). https://doi.org/10.1007/s10562-020-03468-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03468-6

Keywords

Navigation