Skip to main content
Log in

Stability of Zeolite HZSM-5 in Liquid Phase Dehydration of Methanol to Dimethyl Ether

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A high performance HZSM-5 catalyst for liquid phase dehydration of methanol to dimethyl ether (DME) was developed by optimizing Si/Al ratio and hydrothermal treatment temperature. During 6788 h long term test, DME selectivity kept above 99.96% and only slight deactivation was observed primarily due to coking and decline of HZSM-5 crystallinity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mondal U, Yadav GD (2019) Perspective of dimethyl ether as fuel: Part I. Catalysis. J CO2 Util 32:299–320. https://doi.org/10.1016/j.jcou.2019.02.003

  2. Azizi Z, Rezaeimanesh M, Tohidian T, Rahimpour MR (2014) Dimethyl ether: a review of technologies and production challenges. Chem Eng Process Process Intensif 82:150–172. https://doi.org/10.1016/j.cep.2014.06.007

    Article  CAS  Google Scholar 

  3. Arcoumanis C, Bae C, Crookes R, Kinoshita E (2008) The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: a review. Fuel 87:1014–1030. https://doi.org/10.1016/j.fuel.2007.06.007

    Article  CAS  Google Scholar 

  4. Akarmazyan SS, Panagiotopoulou P, Kambolis A, Papadopoulou C, Kondarides DI (2014) Methanol dehydration to dimethylether over Al2O3 catalysts. Appl Catal B Environ 145:136–148. https://doi.org/10.1016/j.apcatb.2012.11.043

    Article  CAS  Google Scholar 

  5. Lei Z, Zou Z, Dai C, Li Q, Chen B (2011) Synthesis of dimethyl ether (DME) by catalytic distillation. Chem Eng Science 66:3195–3203. https://doi.org/10.1016/j.ces.2011.02.034

    Article  CAS  Google Scholar 

  6. Hänggi S, Elbert P, Bütler T, Cabalzar U, Teske S, Bach C, Onder C (2019) A review of synthetic fuels for passenger vehicles. Energy Rep 5:555–569. https://doi.org/10.1016/j.egyr.2019.04.007

    Article  Google Scholar 

  7. Bahadori F, Oshnuie MN (2019) Exergy analysis of indirect dimethyl ether production process. Sustain Energy Technol Assess 31:142–145. https://doi.org/10.1016/j.seta.2018.12.025

    Article  Google Scholar 

  8. Migliori M, Aloise A, Giordano G (2014) Methanol to dimethylether on H-MFI catalyst: the influence of the Si/Al ratio on kinetic parameters. Catal Today 227:138–143. https://doi.org/10.1016/j.cattod.2013.09.033

    Article  CAS  Google Scholar 

  9. Spivey JJ (1991) Review: Dehydration catalysts for the methanol/dimethyl ether reaction. Chem Eng Commun 110:123–142. https://doi.org/10.1080/00986449108939946

    Article  CAS  Google Scholar 

  10. Boon J, van Kampen J, Hoogendoorn R, Tanase S, van Berkel FPF, MvanS A (2019) Reversible deactivation of γ-alumina by steam in the gas-phase dehydration of methanol to dimethyl ether. Catal Commun 119:22–27. https://doi.org/10.1016/j.catcom.2018.10.008

    Article  CAS  Google Scholar 

  11. Osman AI, Abu-Dahrieh JK, Abdelkader A, Hassan NM, Laffir F, McLaren M, Rooney D (2017) Silver-modified η-Al2O3 catalyst for DME production. J Phys Chem C 121:25018–25032. https://doi.org/10.1021/acs.jpcc.7b04697

    Article  CAS  Google Scholar 

  12. Sierraalta A, Añez R, Coll DS, Alejos P (2020) Conversion of methanol to dimethyl ether over silicoaluminophosphates: isolated acid sites and the influence of silicon islands. A DFT-ONIOM study. Microporous Mesoporous Mater 292:109732–109740. https://doi.org/10.1016/j.micromeso.2019.109732

    Article  CAS  Google Scholar 

  13. Migliori M, Catizzone E, Aloise A, Bonura G, Gómez-Hortigüela L, Frusteri L, Cannilla C, Frusteri F, Giordano G (2018) New insights about coke deposition in methanol-to-DME reaction over MOR- MFI- and FER-type zeolites. J Ind Eng Chem 68:196–208. https://doi.org/10.1016/j.jiec.2018.07.046

    Article  CAS  Google Scholar 

  14. Wei Y, de Jongh PE, Bonati MLM, Law DJ, Sunley GJ, de Jong KP (2015) Enhanced catalytic performance of zeolite ZSM-5 for conversion of methanol to dimethyl ether by combining alkaline treatment and partial activation. Appl Catal A Gen 504:211–219. https://doi.org/10.1016/j.apcata.2014.12.027

    Article  CAS  Google Scholar 

  15. Catizzone E, Aloise A, Migliori M, Giordano G (2015) Dimethyl ether synthesis via methanol dehydration: effect of zeolite structure. Appl Catal A Gen 502:215–220. https://doi.org/10.1016/j.apcata.2015.06.017

    Article  CAS  Google Scholar 

  16. Yu Y, Sun D, Wang S, Xiao M, Sun L, Meng Y (2019) Heteropolyacid salt catalysts for methanol conversion to hydrocarbons and dimethyl ether: effect of reaction temperature. Catalysts 9(4):320. https://doi.org/10.3390/catal9040320

    Article  CAS  Google Scholar 

  17. Alharbi W, Kozhevnikova EF, Kozhevnikov IV (2015) Dehydration of methanol to dimethyl ether over heteropoly acid catalysts: the relationship between reaction rate and catalyst acid strength. ACS Catal 5:7186–7193. https://doi.org/10.1021/acscatal.5b01911

    Article  CAS  Google Scholar 

  18. Said AEAA, Goda MN, Kassem MA (2020) Promotional effect of B2O3 WO3 and ZrO2 on the structural textural and catalytic properties of FePO4. Catal Lett 150:1714–1728. https://doi.org/10.1007/s10562-019-03081-2

    Article  CAS  Google Scholar 

  19. Mondal U, Yadav GD (2019) Perspective of dimethyl ether as fuel: Part II-analysis of reactor systems and industrial processes. J CO2 Util 32:321–338. https://doi.org/10.1016/j.jcou.2019.02.006

  20. Hosseininejad S, Afacan A, Hayes RE (2012) Catalytic and kinetic study of methanol dehydration to dimethyl ether. Chem Eng Res Des 90:825–833. https://doi.org/10.1016/j.cherd.2011.10.007

    Article  CAS  Google Scholar 

  21. Liu Z, Sun X, Zhu S, Xu L, Lv Z, Meng S (2007) Process for synthesis of dimethyl ether by catalytic distillation from methanol. WO Pat 2007014534 A1

  22. Kiss AA, Suszwalak DJ-PC, Ignat RM (2013) Process intensification alternatives in the DME production. Chem Eng Trans 35:91–96. https://doi.org/10.3303/CET1335015

    Article  Google Scholar 

  23. Khandan N, Kazemeini M, Aghaziarati M (2008) Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether. Appl Catal A Gen 349:6–12. https://doi.org/10.1016/j.apcata.2008.07.029

    Article  CAS  Google Scholar 

  24. Prodinger S, Shi H, Eckstein S, Hu JZ, Olarte MV, Camaioni DM, Derewinski MA, Lercher JA (2017) Stability of zeolites in aqueous phase reactions. Chem Mater 29:7255–7262. https://doi.org/10.1021/acs.chemmater.7b01847

    Article  CAS  Google Scholar 

  25. Sun X, Wang Y, He Y, Yang Y, Xu S, Zhu S, Yang M, Liu Z (2019) Dissolution equilibrium and in situ growth of HMCM-49 in aqueous-phase reaction. Ind Eng Chem Res 58:9339–9342. https://doi.org/10.1021/acs.iecr.9b01417

    Article  CAS  Google Scholar 

  26. Zhang L, Chen K, Chen B, White JL, Resasco DE (2015) Factors that determine zeolite stability in hot liquid water. J Am Chem Soc 137:11810–11819. https://doi.org/10.1021/jacs.5b07398

    Article  CAS  PubMed  Google Scholar 

  27. Ravenelle RM, Schüßler F, D’Amico A, Danilina N, van Bokhoven JA, Lercher JA, Jones CW, Sievers C (2010) Stability of zeolites in hot liquid water. J Phys Chem C 114:19582–19595. https://doi.org/10.1021/jp104639e

    Article  CAS  Google Scholar 

  28. Lutz W, Toufar H, Kurzhals R, Suckow M (2005) Investigation and modeling of the hydrothermal stability of technically relevant zeolites. Adsorption 11:405–413. https://doi.org/10.1007/s10450-005-5406-9

    Article  CAS  Google Scholar 

  29. Liu Z, Sun X, Xu L, Meng S, Zhu S, Lv Z (2007) Catalyst for preparing dimethyl ether by dewatering of methanol at liquid phase or mixed phase. WO Pat 2007006238 A1

  30. Zhang S, Gong Y, Zhang L, Liu Y, Dou T, Xu J, Deng F (2015) Hydrothermal treatment on ZSM-5 extrudates catalyst for methanol to propylene reaction: finely tuning the acidic property. Fuel Process Technol 129:130–138. https://doi.org/10.1016/j.fuproc.2014.09.006

    Article  CAS  Google Scholar 

  31. Holzinger J, Beato P, Lundegaard LF, Skibsted J (2018) Distribution of aluminum over the tetrahedral sites in ZSM-5 zeolites and their evolution after steam treatment. J Phys Chem C 122:15595–15613. https://doi.org/10.1021/acs.jpcc.8b05277

    Article  CAS  Google Scholar 

  32. Kubo K, Iida H, Namba S, Igarashi A (2014) Effect of steaming on acidity and catalytic performance of H-ZSM-5 and P/H-ZSM-5 as naphtha to olefin catalysts. Microporous Mesoporous Mater 188:23–29. https://doi.org/10.1016/j.micromeso.2014.01.002

    Article  CAS  Google Scholar 

  33. Meng Q, Xin H, Zhang Y, Huang Y, Yi X, Sun Y, Zhong S, Li X (2015) Catalytic dehydration of ethanol to ethylene over steam-treated ZSM-5 zeolites. Sci Adv Mater 7:2343–2351. https://doi.org/10.1166/sam.2015.2388

    Article  CAS  Google Scholar 

  34. Almutairi SMT, Mezari B, Pidko EA, Magusin PCMM, Hensen EJM (2013) Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite. J Catal 307:194–203. https://doi.org/10.1016/j.jcat.2013.07.021

    Article  CAS  Google Scholar 

  35. Tian P, Wei Y, Ye M, Liu Z (2015) Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 5:1922–1938. https://doi.org/10.1021/acscatal.5b00007

    Article  CAS  Google Scholar 

  36. Qi L, Wei Y, Xu L, Liu Z (2015) Reaction behaviors and kinetics during induction period of methanol conversion on HZSM-5 zeolite. ACS Catal 5:3973–3982. https://doi.org/10.1021/acscatal.5b00654

    Article  CAS  Google Scholar 

  37. Vjunov A, Fulton JL, Camaioni DM, Hu JZ, Burton SD, Arslan I, Lercher JA (2015) Impact of aqueous medium on zeolite framework integrity. Chem Mater 27:3533–3545. https://doi.org/10.1021/acs.chemmater.5b01238

    Article  CAS  Google Scholar 

  38. Ennaert T, Geboers J, Gobechiya E, Courtin CM, Kurttepeli M, Houthoofd K, Kirschhock CEA, Magusin PCMM, Bals S, Jacobs PA, Sels BF (2015) Conceptual frame rationalizing the self-stabilization of H-USY zeolites in hot liquid water. ACS Catal 5:754–768. https://doi.org/10.1021/cs501559s

    Article  CAS  Google Scholar 

  39. Shen SC, Kawi S (1999) Understanding of the effect of Al substitution on the hydrothermal stability of MCM-41. J Phys Chem B 103:8870–8876. https://doi.org/10.1021/jp991831y

    Article  CAS  Google Scholar 

  40. Mokaya R (2000) Al content dependent hydrothermal stability of directly synthesized aluminosilicate MCM-41. J Phys Chem B 104:8279–8286. https://doi.org/10.1021/jp001494p

    Article  CAS  Google Scholar 

  41. Zapata PA, Huang Y, Gonzalez-Borja MA, Resasco DE (2013) Silylated hydrophobic zeolites with enhanced tolerance to hot liquid water. J Catal 208:82–97. https://doi.org/10.1016/j.jcat.2013.05.024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Chenglin Sun and Ms. Yefang Ruan for their beneficial discussion and help in experiments.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. XS: Data curation, Formal analysis, Investigation, Writing. YY: Data curation, Investigation. YH: Formal analysis, Investigation. SZ: Supervision, Validation. ZL: Conceptualization, Project administration, Supervision.

Corresponding authors

Correspondence to Xinde Sun or Zhongmin Liu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 238 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Yang, Y., He, Y. et al. Stability of Zeolite HZSM-5 in Liquid Phase Dehydration of Methanol to Dimethyl Ether. Catal Lett 151, 2004–2010 (2021). https://doi.org/10.1007/s10562-020-03454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03454-y

Keywords

Navigation