Skip to main content
Log in

Effect of Calcination Temperature on the Textural Properties and Catalytic Behavior of the Al2O3 Doped Mesoporous Monometallic Cu Catalysts in Dimethyl Oxalate Hydrogenation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Al2O3 doped mesoporous monometallic Cu catalysts were successfully synthesized though the self-assembly Cu species derived from the oxalate precursor undergoing thermal decomposing. The evolutions of microstructures, physicochemical and surface properties of the CuAl catalysts have been systematically characterized focusing on the effect of the calcination temperature during catalyst preparation. It is found that the textural and surface properties of the CuAl catalysts were profoundly affected by the calcination temperature, further determining the resultant catalytic behavior in dimethyl oxalate (DMO) hydrogenation. Particularly, the CuAl-500 possessing the maximum surface Cu+ sites and proper surface acid features exhibits 100.0% DMO conversion and 98.0% ethylene glycol (EG) selectivity in presence of the adequate active Cu0 sites, which is superior to that of the other catalysts under the identical reaction conditions. And no activity loss occurred for more than 200 h demonstrated of the outstanding stability of the CuAl-500 catalyst. Moreover, the synergistic effect between surface Cu+ and Cu0 sites should be responsible for DMO selective hydrogenation. Additionally, the strengthened chemical interaction between Cu and Al species endows the catalysts outstanding stability by suppressing the dispersive Cu NPs agglomeration during DMO hydrogenation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang X, Chen M, Chen X, Lin R, Zhu H, Huang C, Yang W, Tan Y, Wang S, Du Z, Ding Y (2020) J Catal 383:254–263

    CAS  Google Scholar 

  2. Cui G, Zhang X, Wang H, Li Z, Wang W, Yu Q, Zheng L, Wang Y, Zhu J, Wei M (2021) Appl Catal B Environ 280:119406

    CAS  Google Scholar 

  3. Zhu J, Sun W, Wang S, Zhao G, Liu Y, Lu Y (2020) Chem Commun 56:806

    Google Scholar 

  4. Kong X, Wu Y, Ding L, Wang R, Chen J (2020) New J Chem 44:4486–4493

    CAS  Google Scholar 

  5. Zhao Y, Zhang H, Xu Y, Wang S, Xu Y, Wang S, Ma X (2020) J Energy Chem 49:248–256

    Google Scholar 

  6. Ye RP, Lin L, Wang LC, Ding D, Zhou Z, Pan P, Xu Z, Liu J, Adidharma H, Radosz M, Fan M, Yao YG (2020) ACS Catal 10:4465–4490

    CAS  Google Scholar 

  7. Zhu J, Zhao G, Sun W, Nie Q, Wang S, Xue Q, Liu Y, Lu Y (2020) Appl Catal B Environ 270:118873

    CAS  Google Scholar 

  8. Jin E, Zhang Y, He L, Harris HG, Teng M (2014) Fan Appl Catal A-Gen 476:158–174

    CAS  Google Scholar 

  9. Wang Z, Xu Z, Peng S, Zhou Z, Pan P, Lin L, Qin Y, Guo G, Yao Y (2017) Chin J Chem 35:759–768

    CAS  Google Scholar 

  10. Chen CC, Lin L, Ye RP, Sun ML, Yang JX, Li F, Yao YG (2020) J Catal 389:421–431

    CAS  Google Scholar 

  11. Beerthuis R, Rijk JW, Deeley JMS, Sunley GJ, Jong KP, Jongh PE (2020) J Catal 388:30–37

    CAS  Google Scholar 

  12. Zhao Y, Kong L, Xu Y, Huang H, Yao Y, Zhang J, Wang S, Ma X (2020) Ind Eng Chem Res 59:12381–12388

    CAS  Google Scholar 

  13. Zhu Y, Kong X, Li X, Ding G, Zhu Y, Li YW (2014) ACS Catal 4:3612–3620

    CAS  Google Scholar 

  14. Yu X, Vest TA, Gleason-Boure N, Karakalos SG, Tate GL, Burkholder M, Monnier JR, Williams CT (2019) J Catal 380:289–296

    CAS  Google Scholar 

  15. Shang X, Huang H, Han Q, Xu Y, Zhao Y, Wang S, Ma X (2019) Chem Commun 55:5555–5558

    CAS  Google Scholar 

  16. Cui G, Meng X, Zhang X, Wang W, Xu S, Ye Y, Tang K, Wang W, Zhu J, Wei M, Evans DG, Duan X (2019) Appl Catal B Environ 248:394–404

    CAS  Google Scholar 

  17. Li B, Li M, Zeng Q, Wu X (2016) Micro Nano Lett 11:378–381

    CAS  Google Scholar 

  18. Kong X, Ma C, Zhang J, Sun J, Liu K, Chen J (2016) Appl Catal A Gen 509:153–160

    CAS  Google Scholar 

  19. Gan S, Liang L, Baer D, Sievers M, Herman G, Peden C, Phys J (2001) Chem B 105:2412–2416

    CAS  Google Scholar 

  20. Yang Y, Evans J, Rodriguez JA, White MG, Liu P (2010) Phys Chem Chem Phys 12:9909–9917

    CAS  PubMed  Google Scholar 

  21. Toshima N, Wang Y (1994) Langmuir 10:4574–4580

    CAS  Google Scholar 

  22. Zhang XH, Li XX, Chen H, Li TB, Su W, Guo SD (2016) Mater Des 92:58–63

    CAS  Google Scholar 

  23. Roohollah J, Mohammad RT (2010) Mater Sci Eng A 527:7430–7435

    Google Scholar 

  24. Fathy A, Shehata F, Abdelhameed M, Elmahdy M (2012) Mater Des 36:100–107

    CAS  Google Scholar 

  25. Simeonidis K, Mourdikoudis S, Moulla M, Tsiaoussis I, Boubeta CM, Angelakeris M, Samara CD, Kalogirou O (2007) J Magn Magn Mater 316:e1–e4

    CAS  Google Scholar 

  26. Phiwdang K, Suphankij S, Mekprasart W, Pecharapa W (2013) Energy Procedia 34:740–745

    CAS  Google Scholar 

  27. Yuan G, Yu S, Jie J, Wang C, Li Q, Pang H (2020) Chin Chem Lett 31:1941–1945

    CAS  Google Scholar 

  28. Aimable A, Torres Puentes A, Bowen P (2011) Powder Technol 208:467–471

    CAS  Google Scholar 

  29. Zhang L, Liu R, Yang H (2012) Phys E 44:1592–1597

    CAS  Google Scholar 

  30. Li GB, Sun JB, Guo QM, Wang R (2005) J Mater Process Technol 170:336–340

    CAS  Google Scholar 

  31. Viseslava R, Dusan B, Milan TJ (2010) Mater Des 31:1962–1970

    Google Scholar 

  32. Xia S, Yuan Z, Wang L, Chen P, Hou Z (2011) Appl Catal A Gen 403:173–182

    CAS  Google Scholar 

  33. Kercher AK, Nagle DC (2013) Carbon 41:15

    Google Scholar 

  34. Lee S, Ryu H, Lee WJ, Bae JS (2020) J Ind Eng Chem 82:63–70

    CAS  Google Scholar 

  35. Singh J, Rawat M (2016) J Bioelectron Nanotechnol 1:9

    Google Scholar 

  36. Shi J, He Y, Ma K, Tang S, Liu C, Yue H, Liang B (2020) Catal Today. https://doi.org/10.1016/j.cattod.2020.04.042

    Article  Google Scholar 

  37. Zhang S, Hu Q, Fan G, Li F (2013) Catal Commun 39:96–101

    CAS  Google Scholar 

  38. Chen LF, Guo PJ, Qiao MH, Yan SR, Li HX, Shen W, Xu HL, Fan KN (2008) J Catal 257:172–180

    CAS  Google Scholar 

  39. Ham H, Kim J, Cho SJ, Choi JH, Moon DJ, Bae JW (2016) ACS Catal 6:5629–5640

    CAS  Google Scholar 

  40. Chmielarz L, Dziembaj R, Grzybek T, Klinik J, Łojewski T, Olszewska D (2000) A Węgrzyn Catal Lett 70:51–56

    CAS  Google Scholar 

  41. Roy S, Hegde MS, Madras G (2009) Appl Energy 86:2283–2297

    CAS  Google Scholar 

  42. Zhao L, Huang Y, Zhang J, Jiang L, Wang Y (2020) Chem Eng J 397:125419

    CAS  Google Scholar 

  43. Chen Z, Fan C, Pang L, Ming S, Liu P, Zhu D, Wang J, Cai X, Chen H, Lai Y, Li T (2018) Appl Surf Sci 448:671–680

    CAS  Google Scholar 

  44. Nagaiah P, Gidyonu P, Ashokraju M, Rao MV, Chall P, Burri DR, Kamaraju SRR (2019) ChemistrySelect 4:145–151

    CAS  Google Scholar 

  45. Subbaramaiah V, Srivastava VC, Mall ID (2013) Ind Eng Chem Res 52:9021–9029

    CAS  Google Scholar 

  46. Renault O, Gosset LG, Rouchon D, Ermolieff A (2002) J Vac Sci Technol A 20:1867–1876

    CAS  Google Scholar 

  47. Chávez-Díaz MP, Luna-Sánchez RM, Vazquez-Arenas J, Lartundo-Rojas L, Hallen JM, Cabrera-Sierra R (2019) J Solid State Electrochem 23:3187–3196

    Google Scholar 

  48. Makarowicz A, Bailey CL, Weiher N, Kemnitz E, Schroeder SLM, Mukhopadhyay S, Wander A, Searlec BG, Harrisonc NM (2009) Phys Chem Chem Phys 11:5664–5673

    CAS  PubMed  Google Scholar 

  49. Vila F, Granados ML, Ojeda M, Fierro JLG, Mariscal R (2012) Catal Today 187:122–128

    CAS  Google Scholar 

  50. Ye Q, Wang L, Yang RT (2012) Appl Catal A Gen 427–428:24–34

    Google Scholar 

  51. Sharma PK, Dutta RK, Pandey AC (2009) J Magn Magn Mater 321:4001–4005

    CAS  Google Scholar 

  52. Yang B, Gong XQ, Wang HF, Cao XM, Rooney JJ, Hu P (2013) J Am Chem Soc 135:15244–15250

    CAS  PubMed  Google Scholar 

  53. Xu C, Chen G, Zhao Y et al (2018) Nat Commun 9:3367–3375

    PubMed  PubMed Central  Google Scholar 

  54. Ding J, Popa T, Tang J, Gasem KAM, Fan M, Zhong Q (2017) Appl Catal B Environ 209:530–542

    CAS  Google Scholar 

  55. Li S, Wang Y, Zhang J, Wang S, Xu Y, Zhao Y, Ma X (2015) Ind Eng Chem Res 54:1243–1250

    CAS  Google Scholar 

  56. Maity P, Yamazoe S, Tsukuda T (2013) ACS Catal 3:182–185

    CAS  Google Scholar 

  57. Gong J, Yue H, Zhao Y, Zhao S, Zhao L, Lv J, Wang S, Ma X (2012) J Am Chem Soc 134:13922–13925

    CAS  PubMed  Google Scholar 

  58. Zheng X, Lin H, Zheng J, Duan X, Yuan Y (2013) ACS Catal 3:2738–2749

    CAS  Google Scholar 

  59. Peng SY, Xu ZN, Chen QS, Wang ZQ, Lv DM, Sun J, Chen Y, Guo GC (2015) ACS Catal 5:4410–4417

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant STIP No. 2019 L0928), National Natural Science Foundation of China (Grant No. 21503256 and 51604180), Applied Basic Research Programs of Science and Technology Department of Shanxi Province (201701D221036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangpeng Kong or Jiangang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Wu, Y., Yuan, P. et al. Effect of Calcination Temperature on the Textural Properties and Catalytic Behavior of the Al2O3 Doped Mesoporous Monometallic Cu Catalysts in Dimethyl Oxalate Hydrogenation. Catal Lett 151, 2107–2115 (2021). https://doi.org/10.1007/s10562-020-03453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03453-z

Keywords

Navigation