Skip to main content
Log in

Dehydrogenation of propane over sugar foams templated Ga2O3 nanoparticles catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Highly active Ga2O3 nanoparticles catalysts were prepared by one-step oxidative decomposition of gallium nitrate with sucrose-derived carbon foams (SCF) template. The catalysts were investigated by XRD, Ar physisorption, SEM–EDS, HRTEM, TGA, NH3-TPD and 71 Ga MAS NMR. The addition of sucrose facilitated the higher surface area of Ga2O3 nanoparticles and morphological transformation from bulk to flake due to the structure-directing role of the sucrose solution. Moreover, the weak-medium surface acid sites increased by adding sucrose properly, which was related to the larger number of tetrahedral Ga3+ cations. The optimum catalytic activity was achieved over SXCF-Ga2O3 catalysts at the sucrose/Ga2O3 molar ratio of 6 with the propane conversion of 46.63% and propene selectivity of 88.18%.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Chem Rev 114:10613–10653

    Article  CAS  Google Scholar 

  2. Liu Y, Cao Y, Yi N, Feng W, Dai W, Yan S, He H, Fan K (2004) J Catal 224:417–428

    Article  CAS  Google Scholar 

  3. Liu Y, Cao Y, Yan S, Dai W, Fan K (2003) Catal Lett 88:61–67

    Article  CAS  Google Scholar 

  4. Davies T, Taylor SH (2004) J Mol Catal A 220:77–84

    Article  CAS  Google Scholar 

  5. Bettahar MM, Costentin G, Savary L, Lavalley JC (1996) Appl Catal A 145:1–48

    Article  CAS  Google Scholar 

  6. Chaar MA, Patel D, Kung HH (1988) J Catal 109:463–467

    Article  CAS  Google Scholar 

  7. Bhasin MM, Mccain JH, Vora BV, Imai T, Pujadó PR (2001) Appl Catal A 221:397–419

    Article  CAS  Google Scholar 

  8. Michorczyk P, Ogonowski J (2003a) React Kinet Catal L 78:41–47

    Article  CAS  Google Scholar 

  9. Krylov OV, Mamedov AK, Mirzabekova SR (1995) Catal Today 24:371–375

    Article  CAS  Google Scholar 

  10. Kawi S, Kathiraser Y, Ni J, Oemar U, Li Z, Saw ET (2015) Chemsuschem 8:3556–3575

    Article  CAS  Google Scholar 

  11. Michorczyk P, Ogonowski J (2003b) Appl Catal A 251:425–433

    Article  CAS  Google Scholar 

  12. Li H, Yue Y, Miao C, Xie Z, Hua W, Gao Z (2007) Catal Commun 8:1317–1322

    Article  CAS  Google Scholar 

  13. Tan S, Gil LB, Subramanian N, Sholl DS, Nair S, Jones CW, Moore JS, Liu Y, Dixit RS, Pendergast JG (2015) Appl Catal A 498:167–175

    Article  CAS  Google Scholar 

  14. Xu B, Zheng B, Hua W, Yue Y, Gao Z (2006) J Catal 239:470–477

    Article  CAS  Google Scholar 

  15. Ren Y, Wang J, Hua W, Yue Y, Gao Z (2012) J Ind Eng Chem 18:731–736

    Article  CAS  Google Scholar 

  16. Zheng B, Hua W, Yue Y, Gao Z (2005) J Catal 232:143–151

    Article  CAS  Google Scholar 

  17. Yada M, Takenaka H, Machida M, Kijima T (1998) J Chem Soc Dalton 10:1547–1550

    Article  Google Scholar 

  18. Yada M, Ohya M, Machida M, Kijima T (2000) Langmuir 16:4752–4755

    Article  CAS  Google Scholar 

  19. Deshmane CA, Jasinski JB, Carreon MA (2009) Eur J Inorg Chem 22:3275–3281

    Article  Google Scholar 

  20. Michorczyk P, Kuśtrowski P, Kolak A, Zimowska M (2013) Catal Commun 35:95–100

    Article  CAS  Google Scholar 

  21. Wu J, Chen M, Liu Y, Cao Y, He H, Fan K (2013) Catal Commun 30:61–65

    Article  Google Scholar 

  22. Prabhakaran K, Singh PK, Gokhale NM, Sharma SC (2007) J Mater Sci 42:3894–3900

    Article  CAS  Google Scholar 

  23. Varila T, Romar H, Lassi U (2019) Top Catal 62:764–772

    Article  CAS  Google Scholar 

  24. Wang C, O’Connell MJ, Chan CK (2015) ACS Appl Mater Inter 7:8952–8960

    Article  CAS  Google Scholar 

  25. Mi W, Ma J, Luan C, Lv Y, Xiao H, Li Z (2012) Mater Lett 87:109–112

    Article  CAS  Google Scholar 

  26. Aziz WNA, Bumajdad A, Sagheer FA, Madkour M (2020) Mater Chem Phys 249:122927

    Article  Google Scholar 

  27. Chen M, Xu J, Su F, Liu Y, Cao Y, He H, Fan K (2008) J Catal 256:293–300

    Article  CAS  Google Scholar 

  28. Xiao H, Zhang J, Wang P, Wang X, Pang F, Zhang Z, Tan Y (2016) Catal Sci Technol 6:5183–5195

    Article  CAS  Google Scholar 

  29. Massiot D, Vosegaard T, Magneron N, Trumeau D, Montouillout V, Berthet P, Loiseau T, Bujoli B (1999) Solid State Nucl Mag 15:159–169

    Article  CAS  Google Scholar 

  30. Lavalley JC, Daturi M, Montouillout V, Clet G, Arean CO, Delgado MR, Sahibed-dine A (2003) Phys Chem Chem Phys 5:1301–1305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the China Postdoctoral Science Foundation (2017M611473) and the Fundamental Research Funds for the Central Universities (No.50321012017013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyong Ying.

Ethics declarations

Conflicts of interest

There authors declare that they have no conflict to interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P., Fu, H., Ma, H. et al. Dehydrogenation of propane over sugar foams templated Ga2O3 nanoparticles catalysts. Catal Lett 151, 1894–1901 (2021). https://doi.org/10.1007/s10562-020-03452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03452-0

Keywords

Navigation