Skip to main content
Log in

DFNS/α-CD/Au as a Nanocatalyst for Interpolation of CO2 into Aryl Alkynes Followed by SN2 Coupling with Allylic Chlorides

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In the present study, to effectively carbonylate cinnamyl chloride and phenylacetylene with CO2, α-cyclodextrin doping dendritic fibrous nanosilica (DFNS) supported nanoparticles of gold was used as a catalyst (DFNS/α-CD/Au NPs). In the catalyst, the nanoparticles of Au were in situ reduced on the surfaces of DFNS. Transmission electron microscopy (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray energy dispersive spectroscopy (EDS) were utilized for characterizing the nanostructures DFNS/α-CD/Au. It was found that the nanostructures of DFNS/α-CD/Au can be nominated due to their effective and novel catalytic behaviour during the synthesis of 3a,4-dihydronaphtho[2,3-c] furan-1(3H)-ones from cinnamyl chloride, phenylacetylene, and CO2.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Devens G, Moore TA, Moore AL (2009) Acc Chem Res 42:1890–1898

    Google Scholar 

  2. Morris AJ, Meyer GJ, Fujita E (2009) Acc Chem Res 42:1983–1994

    CAS  PubMed  Google Scholar 

  3. Morimoto T, Nishiura C, Tanaka M, Rohacova J, Nakagawa Y, Funada Y, Koike K, Yamamoto Y, Shishido S, Kojima T, Saeki T, Ozeki T, Ishitani O (2013) J Am Chem Soc 135:13266–13269

    CAS  PubMed  Google Scholar 

  4. Tanaka K, Ooyama D (2002) Coord Chem Rev 226:211–218

    CAS  Google Scholar 

  5. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Chem Soc Rev 38:89–99

    CAS  PubMed  Google Scholar 

  6. Sato S, Morikawa T, Saeki S, Kajino T, Motohiro T (2010) Angew Chem Int Ed 49:5101–5105

    CAS  Google Scholar 

  7. Thoi VS, Chang CJ (2011) Chem Commun 47:6578–6580

    CAS  Google Scholar 

  8. Kudo A, Miseki Y (2009) Chem Soc Rev 38:253–278

    CAS  PubMed  Google Scholar 

  9. Qu Y, Duan X (2013) Chem Soc Rev 42:2568–2580

    CAS  PubMed  Google Scholar 

  10. Zhang J, Chen G, Chaker M, Rosei F, Ma D (2013) Appl Catal B Environ 132:107–115

    Google Scholar 

  11. Saadati SM, Sadeghzadeh SM (2018) Catal Lett 148:1692–1702

    CAS  Google Scholar 

  12. Gulati U, Rajesh UC, Rawat DS, Zaleski JM (2020) Green Chem 22:3170–3177

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Greve S, Friedrichsen W (1999) Prog Heterocycl Chem 11:144–162

    CAS  Google Scholar 

  14. Greve S, Friedrichsen W (2000) Prog Heterocycl Chem 12:134–160

    CAS  Google Scholar 

  15. Ito C, Katsuno S, Kondo Y, Tan HTW, Furukawa H (2000) Chem Pharm Bull 48:339–343

    CAS  Google Scholar 

  16. Correa J, Romo J (1966) Tetrahedron 22:685–692

    CAS  Google Scholar 

  17. Hirai KI, Kayama J, Pan JH (1999) Cancer Detect Prev 23:539–550

    CAS  PubMed  Google Scholar 

  18. Wang ML, Jiang TT, Lu Y, Liu HJ, Chen Y (2013) J Mater Chem A 1:5923–5933

    CAS  Google Scholar 

  19. Zhang X, Su Z (2012) Adv Mater 24:4574–4577

    CAS  PubMed  Google Scholar 

  20. Sadeghzadeh SM, Daneshfar F, Malekzadeh M (2014) Chin J Chem 32:349–355

    CAS  Google Scholar 

  21. Liu YM, Tsunoyama H, Akita T, Xie SH, Tsukuda T (2011) ACS Catal 1:2–6

    CAS  Google Scholar 

  22. Yang X, Huang C, Fu ZY, Song HY, Liao SJ, Su YL, Du L, Li XJ (2013) Appl Catal B Environ 140:419–425

    Google Scholar 

  23. Zhong ZY, Lin JY, Teh SP, Teo J, Dautzenberg FM (2007) Adv Funct Mater 17:1402–1408

    CAS  Google Scholar 

  24. Wang F, Liu X, Lu CH, Willner I (2013) ACS Nano 7:7278–7286

    CAS  PubMed  Google Scholar 

  25. Miyamura H, Matsubara R, Miyazaki Y, Kobayashi S (2007) Angew Chem Int Ed 46:4151–4154

    CAS  Google Scholar 

  26. Gu H, Wang J, Ji Y, Wang Z, Chen W, Xue G (2013) J Mater Chem A 1:12471–12477

    CAS  Google Scholar 

  27. Wang X, Liu H, Chen D, Meng X, Liu T, Fu C, Hao N, Zhang Y, Wu X, Ren J, Tang F (2013) ACS Appl Mater Inter 5:4966–4971

    CAS  Google Scholar 

  28. Chang YC, Chen DH (2009) J Hazard Mater 165:664–669

    CAS  PubMed  Google Scholar 

  29. Wang SN, Zhang MC, Zhang WQ (2011) ACS Catal 1:207–211

    CAS  Google Scholar 

  30. Gangula A, Podila R, Ramakrishna M, Karanam L, Janardhana C, Rao AM (2011) Langmuir 27:15268–15274

    PubMed  Google Scholar 

  31. Gomez-Quero S, Cardenas-Lizana F, Keane MA (2013) J Catal 303:41–49

    CAS  Google Scholar 

  32. Xu X, Fu Q, Guo X, Bao X (2013) ACS Catal 3:1810–1818

    CAS  Google Scholar 

  33. Nie XT, Qian HF, Ge QJ, Xu HY, Jin RC (2012) ACS Nano 6:6014–6022

    CAS  PubMed  Google Scholar 

  34. Anand N, Ramudu P, Reddy KHP, Rao KSR, Jagadeesh B, Babu VSP, Burri DR (2013) Appl Catal A Gen 454:119–126

    CAS  Google Scholar 

  35. Sadeghzadeh SM, Zhiani R, Emrani S (2018) Catal Lett 148:119–124

    CAS  Google Scholar 

  36. Wang L, Wang H, Hapala P, Zhu LF, Ren LM, Meng XJ, Lewis JP, Xiao FS (2011) J Catal 281:30–39

    CAS  Google Scholar 

  37. Delidovich IV, Moroz BL, Taran OP, Gromov NV, Pyrjaev PA, Prosvirin IP, Bukhtiyarov VI, Parmon VN (2013) Chem Eng J 223:921–931

    CAS  Google Scholar 

  38. Sadeghzadeh SM (2015) RSC Adv 5:68947–68952

    CAS  Google Scholar 

  39. Lin Y, Qiao Y, Wang Y, Yan Y, Huang J (2012) J Mater Chem 22:18314–18320

    CAS  Google Scholar 

  40. Storaro L, Lenarda M, Moretti E, Talon A, Porta F, Moltrasio B, Canton P (2010) J Coll Interf Sci 350:435–442

    CAS  Google Scholar 

  41. Xu LX, He CH, Zhu MQ, Fang S (2007) Catal Lett 114:202–205

    CAS  Google Scholar 

  42. Liu RH, Gao NS, Zhen F, Zhang YY, Mei L, Zeng XW (2013) Chem Eng J 225:245–253

    CAS  Google Scholar 

  43. Sobczak I, Kusior A, Grams J, Ziolek M (2007) J Catal 245:259–266

    CAS  Google Scholar 

  44. Selvakannan PR, Mantri K, Tardio J, Bhargava SK (2013) J Coll Interf Sci 394:475–484

    CAS  Google Scholar 

  45. Polshettiwar V, Cha D, Zhang XX, Basset JM (2010) Angew Chem Int Ed 49:9652–9656

    CAS  Google Scholar 

  46. Lilly Thankamony AS, Lion C, Pourpoint F, Singh B, Perez Linde AJ, Carnevale D, Bodenhausen G, Vezin H, Lafon O, Polshettiwar V (2015) Angew Chem Int Ed 54:2190–2193

    Google Scholar 

  47. Bouhrara M, Ranga C, Fihri A, Shaikh RR, Sarawade P, Emwas AH, Hedhili MN, Polshettiwar V (2013) ACS Sustain Chem Eng 1:1192–1199

    CAS  Google Scholar 

  48. Dhiman M, Chalke B, Polshettiwar V (2015) ACS Sustain Chem Eng 3:3224–3230

    CAS  Google Scholar 

  49. Fihri A, Bouhrara M, Cha D, Almana N, Polshettiwar V (2012) ChemSusChem 5:85–89

    CAS  PubMed  Google Scholar 

  50. Mahato SK, Bhaumik M, Maji A, Dutta A, Maiti D, Maity A (2018) J Colloid Interface Sci 513:592–601

    CAS  PubMed  Google Scholar 

  51. Jayarajan R, Kumar R, Gupta J, Dev G, Kadu P, Chatterjee D, Bahadur D, Maiti D, Maji SK (2019) J Mater Chem A 7:4486–4493

    CAS  Google Scholar 

  52. Kundu PK, Dhiman M, Modak A, Chowdhury A, Polshettiwar V, Maiti D (2016) ChemPlusChem 81:1142–1146

    CAS  PubMed  Google Scholar 

  53. Das J, Dolui P, Ali W, Biswas JP, Chandrashekar HB, Prakasha G, Maiti D (2020) Chem Sci 11:9697–9702

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen Y, Liu Y, Mao D, Yu J, Zheng Y, Guo X, Ma Z (2020) J Taiwan Inst Chem Eng 113:16–26

    CAS  Google Scholar 

  55. Bai L, Wyrwalski F, Franc J, Lamonier O, Khodakov AY, Monflier E, Ponchel A (2013) Appl Catal B Environ 138-139:381–390

    CAS  Google Scholar 

  56. Bai L, Wyrwalski F, Safariamin M, Bleta R, Lamonier JF, Przybylski C, Monflier E, Ponchel A (2016) J Catal 341:191–204

    CAS  Google Scholar 

  57. Karnjanakom S, Guan GQ, Asep B, Hao XG, Kongparakul S, Samart C, Abudula A (2016) J Phys Chem C 120:3396–3407

    CAS  Google Scholar 

  58. Wu H, Liu J, Liu H, He D (2019) Fuel 235:868–877

    CAS  Google Scholar 

  59. Fihri A, Bouhrara M, Patil U, Cha D, Saih Y, Polshettiwar V (2012) ACS Catal 2:1425–1431

    CAS  Google Scholar 

  60. Dibenedetto A, Angelini A, Stufano P (2014) J Chem Technol Biot 89:334–353

    CAS  Google Scholar 

  61. Low JX, Cheng B, Yu JG (2017) Appl Surf Sci 392:658–686

    CAS  Google Scholar 

  62. Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fernandez JR, Ferrari MC, Gross R, Hallett JP, Haszeldine RS, Heptonstall P, Lyngfelt A, Makuch Z, Mangano E, Porter RTJ, Pourkashanian M, Rochelle GT, Shah N, Yao JG, Fennell PS (2014) Energy Environ Sci 7:130–189

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the National Natural Science Foundation of China (No. 51908211).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Wang, Li Feng or Farzaneh Shamsa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, X., Feng, L. et al. DFNS/α-CD/Au as a Nanocatalyst for Interpolation of CO2 into Aryl Alkynes Followed by SN2 Coupling with Allylic Chlorides. Catal Lett 151, 1911–1922 (2021). https://doi.org/10.1007/s10562-020-03451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03451-1

Keywords

Navigation