Effect of Gallium and Vanadium in NiMoV/Al2O3-Ga2O3 Catalysts on Indole Hydrodenitrogenation

Abstract

The effect of Ga as support modifier and V as second promoter on the NiMoV/Al2O3-Ga2O3 catalyst varying the synthesis method (SG: sol–gel synthesis vs I: impregnation synthesis) was studied. The catalysts were characterized by elemental analysis, textural properties, XRD, XPS, 27Al NMR, Raman, EDX elemental mapping and HRTEM. The chemical analyses by XRF showed coincidence between experimental and theoretical values according to stoichiometric values proposed to Mo/Ni = 6 and (V + Ni)/(V + Ni + Mo) = 0.35. The sol–gel synthesis method increased the surface area by incorporation of Ga3+ ions into the Al2O3 forming Ga–O–Al bonding; whereas the impregnation synthesis leads to decrease by blocking of alumina pores, as follows NiMoV/Al2O3-Ga2O3(I) < NiMoV/Al2O3-Ga2O3(SG) < Al2O3-Ga2O3(I) < NiMo/Al2O3 < Al2O3-Ga2O3(SG) < Al2O3. The values of BJH mesopores mean size between 6.13 and 7.68 nm. XRD and XPS confirmed a bulk structure typical of (NH4)4[NiMo6O24H6]·5H2O and the presence at the surface of Mo4+, Mo6+, NixSy, NiMoS, Ni2+, Ga3+ and V5+ species, respectively. Raman showed that the sol–gel synthesis method reduces the interactions Ni-Mo sulfide-support and improvement the sulfidation degree NiMoV/Al2O3-Ga2O3(SG) as showed sulfur analysis CHONS. The largest proportion of AlO4 content using the impregnation method to add Ga was verified by 27Al solid-state MAS NMR. The EDS elemental mapping confirmed that Ni, Mo, Al, Ga, V and S are well-distributed on support. The HRTEM analysis shows that the length and stacking distribution of MoS2 crystallites varied from 5.67 to 6.01 nm and 2.46 to 2.74 when using the sol–gel and impregnation synthesis method, respectively. The catalytic results revealed that the synthesis method induced the presence of gallium on the surface influencing the dispersion V5+ species, whose effect could have some relation with strength and density of acid sites that in turn influence the dispersion of the MoS2 phase, which correlates well with the indole HDN activities. The activities as indole HDN pseudo-first-order rate constants’ values (kHDN) from 0.29 to 2.78 mol/(m2·h): NiMoV/Al2O3 < NiMoV/Al2O3-Ga2O3(I) < NiMo/Al2O3 < NiMoV/Al2O3-Ga2O3(SG). Nevertheless, the nature of the active site can be related with reaction pathways, that is, NiMoV/Al2O3-Ga2O3(SG) and NiMoV/Al2O3-Ga2O3(I) catalysts produce ECH through HIND, while NiMoV/Al2O3 and NiMo/Al2O3 produce EB by hydrogenolysis of HIND to OEA. In the regard, the Ga and V act as structural promoters in the NiMo catalysts, allowing the largest generation of NiMoS M-edge-like and BRIM sites for HDN.

Graphic Abstract

The synthesis method influences the reaction pathways for indole HDN, suggesting that NiMoV/Al2O3-Ga2O3(SG) and NiMoV/Al2O3-Ga2O3(I) had the highest production of OEA suggesting that ECH derive from HIND, whereas NiMo/Al2O3 shows that OEA concentration is very low at short times, indicating that ECH derives of OEA

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Gary JH, Handwerk GE (2001) Petroleum Refining Technology and Economics 4a ed. Marcel Dekker, New York

    Google Scholar 

  2. 2.

    Ledesma BC, Anunziata OA, Beltramone AR (2016) HDN of indolee over Ir-modified Ti-SBA-15. Appl. Catal. B Environ. 192:220–233

    CAS  Article  Google Scholar 

  3. 3.

    Babich IV, Moulijn JA (2003) Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82:607–631

    CAS  Article  Google Scholar 

  4. 4.

    Ministerio de Ambiente y Desarrollo Sostenible, y Ministerio de Minas y Energías, resolución 90963 de 2014 y 40619 de 2017. 2014, pp. 1–3 y 5.

  5. 5.

    Le Z, Afanasiev P, Li D, Long X, Vrinat M (2008) Solution synthesis of the unsupported Ni–W sulfide hydrotreating catalysts», New Dev. Sulfide Catal. Link. Ind. Needs Fundam. Chall. 130:24–31

    CAS  Google Scholar 

  6. 6.

    Dorbon M, Bernasconi C (1989) Nitrogen compounds in light cycle oils: identification and consequences of ageing. Fuel. https://doi.org/10.1016/0016-2361(89)90077-X

    Article  Google Scholar 

  7. 7.

    Furimsky E (2003) Metal carbides and nitrides as potential catalysts for hydroprocessing. Appl Catal Gen. https://doi.org/10.1016/S0926-860X(02)00428-3

    Article  Google Scholar 

  8. 8.

    Kim SC, Massoth FE (2000) Kinetics of the Hydrodenitrogenation of Indolee. Ind. Eng. Chem. Res. 39:1705–1712

    CAS  Article  Google Scholar 

  9. 9.

    Nguyen M-T, Pirngruber GD, Chainet F, Tayakout-Fayolle M, Geantet C (2017) Indolee Hydrodenitrogenation over Alumina and Silica–Alumina-Supported Sulfide Catalysts—Comparison with Quinoline. Ind Eng Chem Res 56:11088–11099. https://doi.org/10.1021/acs.iecr.7b02993

    CAS  Article  Google Scholar 

  10. 10.

    Chianelli RR (1984) Fundamental Studies of Transition Metal Sulfide Hydrodesulfurization Catalysts. Catal Rev 26:361–393. https://doi.org/10.1080/01614948408064718

    CAS  Article  Google Scholar 

  11. 11.

    Debecker DP, Stoyanova M, Rodemerck U, Gaigneaux EM (2011) Preparation of MoO3/SiO2–Al2O3 metathesis catalysts via wet impregnation with different Mo precursors. J Mol Catal Chem 340:65–76. https://doi.org/10.1016/j.molcata.2011.03.011

    CAS  Article  Google Scholar 

  12. 12.

    Breysse M, Afanasiev P, Geantet C, Vrinat M (2003) Overview of support effects in hydrotreating catalysts. Eff Support Hydrotreating Catal Ultra Clean Fuels. https://doi.org/10.1016/S0920-5861(03)00400-0

    Article  Google Scholar 

  13. 13.

    Cabello CI, Botto IL, Thomas HJ (2000) Anderson type heteropolyoxomolybdates in catalysis. Appl Catal Gen. https://doi.org/10.1016/S0926-860X(99)00535-9

    Article  Google Scholar 

  14. 14.

    Muralidhar G, Massoth FE, Shabtai J (1984) Catalytic functionalities of supported sulphides: I. Effect of support and additives on the CoMo catalyst. J Catal. https://doi.org/10.1016/0021-9517(84)90108-8

    Article  Google Scholar 

  15. 15.

    Palcheva R, Kaluža L, Spojakina A, Jirátová K, Tyuliev G (2012) NiMo/γ-Al2O3 Catalysts from Ni Heteropolyoxomolybdate and Effect of Alumina Modification by B Co, or Ni. Chin J Catal. https://doi.org/10.1016/S1872-2067(11)60376-8

    Article  Google Scholar 

  16. 16.

    Solís-Casados DA, Rodríguez-Nava CE, Klimova T, Escobar-Alarcón L (2020) Selective HDS of DBT using a K2O-modified CoMoW/Al2O3-MgO catalytic formulation. Catal Today. https://doi.org/10.1016/j.cattod.2019.07.029

    Article  Google Scholar 

  17. 17.

    Escobar-Alarcón L, Klimova T, Escobar-Aguilar J, Romero S, Morales-Ramírez C, Solís-Casados D (2013) Preparation and characterization of Al2O3–MgO catalytic supports modified with lithium. Fuel. https://doi.org/10.1016/j.fuel.2012.10.013

    Article  Google Scholar 

  18. 18.

    Gutiérrez OY, Klimova T (2011) Effect of the support on the high activity of the (Ni)Mo/ZrO2–SBA-15 catalyst in the simultaneous hydrodesulfurization of DBT and 4,6-DMDBT. J Catal. https://doi.org/10.1016/j.jcat.2011.04.001

    Article  Google Scholar 

  19. 19.

    Jirátová K, Kraus M (1986) Effect of support properties on the catalytic activity of HDS catalysts. Appl Catal 27:21–29. https://doi.org/10.1016/S0166-9834(00)81043-X

    Article  Google Scholar 

  20. 20.

    Cimino A, Lo Jacono M, Schiavello M (1975) Effect of zinc, gallium, and germanium ions on the structural and magnetic properties of nickel ions supported on alumina. J Phys Chem. https://doi.org/10.1021/j100570a010

    Article  Google Scholar 

  21. 21.

    Strohmeier B (1984) Surface spectroscopic characterization of the interaction between zinc ions and $gamma;-alumina. J Catal 86:266–279. https://doi.org/10.1016/0021-9517(84)90372-5

    CAS  Article  Google Scholar 

  22. 22.

    Saini AR, Johnson BG, Massoth FE (1988) Studies of molybdena—alumina catalysts XIV Effect of Cation-Modified Aluminas. Appl Catal. https://doi.org/10.1016/S0166-9834(00)80434-0

    Article  Google Scholar 

  23. 23.

    Jang JG, Lee YK (2019) Promotional effect of Ga for Ni2P catalyst on hydrodesulfurization of 4,6-DMDBT. Appl Catal B Environ 250:181–188

    CAS  Article  Google Scholar 

  24. 24.

    Zhou W et al (2019) Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo supported on Ga-modified Y zeolites catalysts. J Catal 374:345–359

    CAS  Article  Google Scholar 

  25. 25.

    Zepeda TA, Pawelec B, Díaz de León JN, JA. de los Reyes, A. Olivas (2012) Effect of gallium loading on the hydrodesulfurization activity of unsupported Ga2S3/WS2 catalysts. Appl Catal B Environ 111–112:10–19

    Article  Google Scholar 

  26. 26.

    Zepeda TA et al (2019) Hydrodesulfurization activity of Ni-containing unsupported Ga(x)WS2 catalysts. Catal. Commun. 130:105760

    CAS  Article  Google Scholar 

  27. 27.

    Altamirano E, J. A. de los Reyes, F. Murrieta, M Vrinat (2008) Hydrodesulfurization of 4,6-dimethyldibenzothiophene over Co(Ni)MoS2 catalysts supported on alumina: Effect of gallium as an additive. Catal. Today 133–135:292–298

    Article  Google Scholar 

  28. 28.

    Altamirano E, JA de los Reyes, F Murrieta, M Vrinat (2005) Hydrodesulfurization of dibenzothiophene and 4,6-dimethyl-dibenzothiophene: Gallium effect over NiMo/Al2O3 sulfided catalysts. J. Catal. 235:403–412

    CAS  Article  Google Scholar 

  29. 29.

    Díaz JN, de León M, Picquart LM, Vrinat M, JA de los Reyes (2012) Hydrodesulfurization of sulfur refractory compounds: Effect of gallium as an additive in NiWS/γ-Al2O3 catalysts. J Mol Catal Chem 363–364:311–321

    Article  Google Scholar 

  30. 30.

    Chul Park Y, Rhee HK (1999) Hydrodenitrogenation of pyridine over GaNiMo/Al2O3 catalyst: effect of gallium. Appl Catal Gen 179:145–153

    CAS  Article  Google Scholar 

  31. 31.

    Lo Jacono M, Schiavello M, De Beer VHJ, Minelli G (1977) Effect of gallium ions and of preparation methods on the structural properties of cobalt-molybdenum-alumina catalysts. J Phys Chem 81:1583–1588

    CAS  Article  Google Scholar 

  32. 32.

    Petre AL, Auroux A, Gervasini A, Caldararu M, Ionescu NI (2001) Calorimetric Characterization of Surface Reactivity of Supported Ga2O3 Catalysts. J. Therm. Anal. Calorim. 64:253–260. https://doi.org/10.1023/A:1011557601344

    CAS  Article  Google Scholar 

  33. 33.

    Altamirano E (2005) HDS del DBT y 46 DMDBT sobre catalizadores NiMoCoMo y NiW en estado sulfuro soportados en alúmina: efecto del Ga. DOCTORADO Universidad Autónoma Metropolitana, Mexico

    Google Scholar 

  34. 34.

    Dejonghe S, Hubaut R, Grimblot J, Bonnelle JP, Des Courieres T, Faure D (1990) Hydrodemetallation of a vanadylporphyrin over sulfided NiMoγAl2O3, MoγAl2O3, and γAl2O3 catalysts—effect of the vanadium deposit on the toluene hydrogenation. Catal Today. https://doi.org/10.1016/0920-5861(90)80009-E

    Article  Google Scholar 

  35. 35.

    Rankel L, Rollmann L (1983) Catalytic activity of metals in petroleum and their removal. Fuel. https://doi.org/10.1016/0016-2361(83)90250-8

    Article  Google Scholar 

  36. 36.

    Asaoka S, Nakata S, Shiroto Y, Takeuchi C (1987) Characteristics of Vanadium Complexes in Petroleum Before and After Hydrotreating. In: Filby RH, Branthaver YJF (eds) Metal Complexes in Fossil Fuels, vol 344. American Chemical Society, Washington DC

    Google Scholar 

  37. 37.

    Lacroix M, Boutarfa N, Guillard C, Vrinat M, Breysse M (1989) Hydrogenating properties of unsupported transition metal sulphides. J Catal 120:473–477

    CAS  Article  Google Scholar 

  38. 38.

    Betancourt P, Marrero S, Pinto-Castilla S (2013) V–Ni–Mo sulfide supported on Al2O3: Preparation, characterization and LCO hydrotreating Fuel Process. Technol 114:21–25

    CAS  Google Scholar 

  39. 39.

    Betancourt P, Rives A, Scott CE, Hubaut R (2000) Hydrotreating on mixed vanadium–nickel sulphides. Catal Today 57:201–207

    CAS  Article  Google Scholar 

  40. 40.

    Méndez FJ, Bastardo-González E, Betancourt P, Paiva L, Brito JL (2013) NiMo/MCM-41 Catalysts for the Hydrotreatment of Polychlorinated Biphenyls. Catal Lett 143:93–100

    Article  Google Scholar 

  41. 41.

    Haneda M, Kintaichi Y, Mizushima T, Kakuta N, Hamada H (2001) Structure of Ga2O3-Al2O3 prepared by sol–gel method and its catalytic performance for NO reduction by propene in the presence of oxygen. Appl. Catal. B Environ. 31:81–92

    CAS  Article  Google Scholar 

  42. 42.

    Haneda M, Kintaichi Y, Shimada H, Hamada H (2000) Selective Reduction of NO with Propene over Ga2O3–Al2O3: Effect of Sol-Gel Method on the Catalytic Performance. J. Catal. 192:137–148

    CAS  Article  Google Scholar 

  43. 43.

    Puello-Polo E, Marquez E, Brito JL (2018) One-pot synthesis of Nb-modified Al2O3 support for NiMo hydrodesulfurization catalysts. J Sol-Gel Sci Technol 88:90–99

    CAS  Article  Google Scholar 

  44. 44.

    Barrett EP, Joyner LG, Halenda PP (1951) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 73:373–380

    CAS  Article  Google Scholar 

  45. 45.

    International Centre for Diffraction Data 1995 International Centre for Diffraction Data® (ICDD®), Power Diffraction File, ICDD, Newtown Square Philadelphia

  46. 46.

    Farojr A, Dossantos A (2006) Cumene hydrocracking and thiophene HDS on niobia-supported Ni, Mo and Ni–Mo catalysts. Catal Today 118:402–409

    Article  Google Scholar 

  47. 47.

    Li M, Li H, Jiang F, Chu Y, Nie H (2010) The relation between morphology of (Co)MoS2 phases and selective hydrodesulfurization for CoMo catalysts. Catal. Today 149:35–39. https://doi.org/10.1016/j.cattod.2009.03.017

    CAS  Article  Google Scholar 

  48. 48.

    Hensen EJM et al (2001) The Relation between Morphology and Hydrotreating Activity for Supported MoS2 Particles. J. Catal. 199:224–235. https://doi.org/10.1006/jcat.2000.3158

    CAS  Article  Google Scholar 

  49. 49.

    Kasztelan S, Toulhoat H, Grimblot J, Bonnelle JP (1984) A geometrical model of the active phase of hydrotreating catalysts. Appl. Catal. 13:127–159. https://doi.org/10.1016/S0166-9834(00)83333-3

    CAS  Article  Google Scholar 

  50. 50.

    Cid R, Pecchi G (1985) Potentiometric method for determining the number and relative strength of acid sites in colored catalysts Appl. Catal. https://doi.org/10.1016/S0166-9834(00)84340-7

    Article  Google Scholar 

  51. 51.

    Pizzio LR, Blanco MN (2003) Isoamyl acetate production catalyzed by H3PW12O40 on their partially substituted Cs or K salts. Appl. Catal. Gen. 255:265–277. https://doi.org/10.1016/S0926-860X(03)00565-9

    CAS  Article  Google Scholar 

  52. 52.

    Dalla Costa BO, Legnoverde MS, Lago C, Decolatti HP, Querini CA (2016) Sulfonic functionalized SBA-15 catalysts in the gas phase glycerol dehydration Thermal stability and catalyst deactivation. Microporous Mesoporous Mater 230:66–75

    CAS  Article  Google Scholar 

  53. 53.

    Froment GF, De Wilde J, Bischoff KB (2011) Chemical reactor analysis and design 3 edn. Wiley, Hoboken NJ

    Google Scholar 

  54. 54.

    Moulijn JA, Tarfaoui A, Kapteijn F (1991) General aspects of catalyst testing. Today Catal. https://doi.org/10.1016/0920-5861(91)87002-5

    Article  Google Scholar 

  55. 55.

    Thommes M et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  56. 56.

    Sampieri A et al (2010) Formation of heteropolymolybdates during the preparation of Mo and NiMo HDS catalysts supported on SBA-15: Influence on the dispersion of the active phase and on the HDS activity. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2009.10.024

    Article  Google Scholar 

  57. 57.

    Ueno A, Suzuki H, Kotera Y (1983) Particle-size distribution of nickel dispersed on silica and its effects on hydrogenation of propionaldehyde. J Soc Faraday Trans Phys Chem Condens Phases Chem. https://doi.org/10.1039/f19837900127

    Article  Google Scholar 

  58. 58.

    Ayala-G M, E. Puello P, P. Quintana, G. González-García, C. Diaz, (2015) Comparison between alumina supported catalytic precursors and their application in thiophene hydrodesulfurization: (NH 4) 4 [NiMo 6 O 24 H 6 ]·5H 2 O/γ-Al 2 O 3 and NiMoOx/γ-Al 2 O 3 conventional systems. RSC Adv 5:102652–102662

    CAS  Article  Google Scholar 

  59. 59.

    Galtayries A, Wisniewski S, Grimblot J (1997) Formation of thin oxide and sulphide films on polycrystalline molybdenum foils: characterization by XPS and surface potential variations. J Electron Spectrosc Relat Phenom 87:31–44

    CAS  Article  Google Scholar 

  60. 60.

    Weber Th, Muijsers JC, van Wolput JHMC, Verhagen CPJ, Niemantsverdriet JW (1996) Basic Reaction Steps in the Sulfidation of Crystalline MoO3 to MoS2, As Studied by X-ray Photoelectron and Infrared Emission Spectroscopy. J Phys Chem 100:14144–14150

    CAS  Article  Google Scholar 

  61. 61.

    Aigler JM et al (1993) ESCA study of “model” allyl-based molybdenum/silica catalysts. J. Phys. Chem. 97:5699–5702. https://doi.org/10.1021/j100123a039

    CAS  Article  Google Scholar 

  62. 62.

    Mozhaev AV, Nikulshin PA, Pimerzin AA, Maslakov KI, Pimerzin AA (2016) Investigation of co-promotion effect in NiCoMoS/Al2O3 catalysts based on Co2Mo10-heteropolyacid and nickel citrate. Catal Today 271:80–90

    CAS  Article  Google Scholar 

  63. 63.

    Ninh TKT, Massin L, Laurenti D, Vrinat M (2011) A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts. Appl Catal Gen 407:29–39

    CAS  Article  Google Scholar 

  64. 64.

    Schön G (1973) Auger and direct electron spectra in X-ray photoelectron studies of zinc, zinc oxide, gallium and gallium oxide. J. Electron Spectrosc. Relat. Phenom. 2:75–86. https://doi.org/10.1016/0368-2048(73)80049-0

    Article  Google Scholar 

  65. 65.

    Escaño MCS et al (2019) On the presence of Ga2O sub-oxide in high-pressure water vapor annealed AlGaN surface by combined XPS and first-principles methods. Appl. Surf. Sci. 481:1120–1126. https://doi.org/10.1016/j.apsusc.2019.03.196

    CAS  Article  Google Scholar 

  66. 66.

    Escalante Y et al (2019) MCM-41-supported vanadium catalysts structurally modified with Al or Zr for thiophene hydrodesulfurization. Appl. Petrochem. Res. 9:47–55. https://doi.org/10.1007/s13203-019-0227-z

    CAS  Article  Google Scholar 

  67. 67.

    Fierro JLG, Arrua LA, Lopez Nieto JM, Kremenic G (1988) Surface properties of Co-precipitated VTiO catalysts and their relation to the selectiveoxidation of isobutene. Appl. Catal. 37:323–338. https://doi.org/10.1016/S0166-9834(00)80770-8

    CAS  Article  Google Scholar 

  68. 68.

    Liu Y-M et al (2004) Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane. J Catal 224:417–428. https://doi.org/10.1016/j.jcat.2004.03.010

    CAS  Article  Google Scholar 

  69. 69.

    Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 4:2695–2700. https://doi.org/10.1021/nn1003937

    CAS  Article  Google Scholar 

  70. 70.

    Zhang X, Qiao X-F, Shi W, Wu J-B, Jiang D-S, Tan P-H (2015) Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer multilayer to bulk material. Chem Soc Rev 44:2757–2785. https://doi.org/10.1039/C4CS00282B

    CAS  Article  Google Scholar 

  71. 71.

    Wang JA, Bokhimi X, Morales A, Novaro O, López T, Gómez R (1999) Aluminum Local Environment and Defects in the Crystalline Structure of Sol−Gel Alumina. Catalyst J Phys Chem B 103:299–303. https://doi.org/10.1021/jp983130r

    CAS  Article  Google Scholar 

  72. 72.

    Malki A, Mekhalif Z, Detriche S, Fonder G, Boumaza A, Djelloul A (2014) Calcination products of gibbsite studied by X-ray diffraction, XPS and solid-state NMR. J Solid State Chem 215:8–15. https://doi.org/10.1016/j.jssc.2014.03.019

    CAS  Article  Google Scholar 

  73. 73.

    Rakmae S et al (2020) Defining nickel phosphides supported on sodium mordenite for hydrodeoxygenation of palm oil. Fuel Process Technol 198:106236. https://doi.org/10.1016/j.fuproc.2019.106236

    CAS  Article  Google Scholar 

  74. 74.

    YuN Pushkar A, Sinitsky OOP, Kharlanov AN, Lunina EV (2000) Structure and Lewis acid properties of gallia–alumina catalysts. Appl Surf Sci 167:69–78. https://doi.org/10.1016/S0169-4332(00)00510-9

    Article  Google Scholar 

  75. 75.

    Rangarajan S, Mavrikakis M (2017) On the Preferred Active Sites of Promoted MoS 2 for Hydrodesulfurization with Minimal Organonitrogen Inhibition. ACS Catal 7:501–509. https://doi.org/10.1021/acscatal.6b02735

    CAS  Article  Google Scholar 

  76. 76.

    Vázquez-Garrido I, López-Benítez A, Berhault G, Guevara-Lara A (2019) Effect of support on the acidity of NiMo/Al2O3-MgO and NiMo/TiO2-Al2O3 catalysts and on the resulting competitive hydrodesulfurization/hydrodenitrogenation reactions. Fuel 236:55–64. https://doi.org/10.1016/j.fuel.2018.08.053

    CAS  Article  Google Scholar 

  77. 77.

    Sattayanon C, Namuangruk S, Kungwan N, Kunaseth M (2017) Reaction and free-energy pathways of hydrogen activation on partially promoted metal edge of CoMoS and NiMoS: A DFT and thermodynamics study. Fuel Process Technol 166:217–227. https://doi.org/10.1016/j.fuproc.2017.06.003

    CAS  Article  Google Scholar 

  78. 78.

    Ramírez J et al (2020) Interaction of different molecules with the hydrogenation and desulfurization sites of NiMoS supported particles with different morphology. Catal Today 353:99–111. https://doi.org/10.1016/j.cattod.2019.08.032

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support to Universidad del Atlántico (through “1º convocatoria interna para apoyo al Desarrollo de trabajos de grado en investigacion formative-nivel pregrado y postgrado”).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Esneyder Puello-Polo or Edgar Marquez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Puello-Polo, E., Reales, Y.P., Marquez, E. et al. Effect of Gallium and Vanadium in NiMoV/Al2O3-Ga2O3 Catalysts on Indole Hydrodenitrogenation. Catal Lett (2020). https://doi.org/10.1007/s10562-020-03438-y

Download citation

Keywords

  • Gallium
  • Vanadium
  • Modified al2O3
  • Synthesis method
  • Indole hydrodenitrogenation