Skip to main content
Log in

Process Optimization for a Sustainable and Selective Conversion of Fumaric Acid into γ-Butyrolactone Over Pd-Re/SiO2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Selective production of γ-butyrolactone (GBL) from the catalytic hydrogenation of fumaric acid is an interesting reaction in the realm of biomass valorization, since GBL can be considered a bio-derived platform molecule. From a green chemistry point of view, water would be the ideal solvent, although accomplishing good conversion and selectivity rates in aqueous media can be challenging for this hydrogenation reaction, even when a suitable catalyst is employed. Herein, this process was optimized through experimental design, using a Pd-Re/SiO2 catalyst and water as solvent. The conversion of fumaric acid was complete, and GBL was produced with 91% selectivity at the pressure and temperature conditions predicted by the empirical model (181 °C and 41 bar, repectively). The experimental design allowed for high selectivity to be obtained in aqueous media by providing better rationalization of the combined effect of the temperature and pressure variables.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Serrano-Ruiz JC, Pineda A, Balu AM et al (2012) Catalytic transformations of biomass-derived acids into advanced biofuels. Catal Today 195:162–168. https://doi.org/10.1016/j.cattod.2012.01.009

    Article  CAS  Google Scholar 

  2. Bechthold I, Bretz K, Kabasci S et al (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31:647–654. https://doi.org/10.1002/ceat.200800063

    Article  CAS  Google Scholar 

  3. Research and Markets (2019) Global fumaric acid Market report 2019: market was worth US$ 631 million in 2018 and is projected to reach US$ 855 million by 2024

  4. Research and Markets (2015) 1,4 Butanediol market by technology (Reppe process, Davy process, Butadiene process, Propylene oxide process and others), and by Application (THF, PBT, GBL, PU, and Others) – Global Trends & Forecasts to 2019

  5. Grand View Research (2017) 1,4 Butanediol market size worth $12.6 billion By 2025 | CAGR: 7.7%

  6. Hong UG, Hwang S, Seo JG et al (2010) Hydrogenation of succinic acid to γ-butyrolactone over palladium catalyst supported on mesoporous alumina xerogel. Catal Lett. 138:28–33. https://doi.org/10.1007/s10562-010-0368-2

    Article  CAS  Google Scholar 

  7. Hong UG, Park HW, Lee J et al (2012) Hydrogenation of succinic acid to γ-butyrolactone (GBL) over ruthenium catalyst supported on surfactant-templated mesoporous carbon. J Ind Eng Chem 18:462–468. https://doi.org/10.1016/j.jiec.2011.11.054

    Article  CAS  Google Scholar 

  8. Report CR (2014) Gamma – butyrolactone (GBL). , Geneva

  9. Kang KH, Hong UG, Bang Y et al (2015) Hydrogenation of succinic acid to 1,4-butanediol over Re-Ru bimetallic catalysts supported on mesoporous carbon. Appl Catal A Gen 490:153–162. https://doi.org/10.1016/j.apcata.2014.11.029

    Article  CAS  Google Scholar 

  10. Huang Z, Barnett KJ, Chada JP et al (2017) Hydrogenation of γ-Butyrolactone to 1,4-Butanediol over CuCo/TiO2 Bimetallic catalysts. ACS Catal 7:8429–8440. https://doi.org/10.1021/acscatal.7b03016

    Article  CAS  Google Scholar 

  11. Mallard, W., Linstrom, P.: NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899

  12. Chaudhari RV, Rode CV, Deshpande RM et al (2003) Kinetics of hydrogenation of maleic acid in a batch slurry reactor using a bimetallic Ru-Re/C catalyst. Chem Eng Sci 58:627–632. https://doi.org/10.1016/S0009-2509(02)00588-2

    Article  CAS  Google Scholar 

  13. Rosi L, Frediani M, Frediani P (2010) Isotopomeric diols by “one-pot” Ru-catalyzed homogeneous hydrogenation of dicarboxylic acids. J Organomet Chem 695:1314–1322. https://doi.org/10.1016/j.jorganchem.2010.02.015

    Article  CAS  Google Scholar 

  14. López Granados M, Moreno J, Alba-Rubio AC et al (2020) Catalytic transfer hydrogenation of maleic acid with stoichiometric amounts of formic acid in aqueous phase: paving the way for more sustainable succinic acid production. Green Chem 22:1859–1872. https://doi.org/10.1039/c9gc04221k

    Article  CAS  Google Scholar 

  15. Deshpande RM, Buwa VV, Rode CV et al (2002) Tailoring of activity and selectivity using bimetallic catalyst in hydrogenation of succinic acid. Catal Commun 3:269–274. https://doi.org/10.1016/S1566-7367(02)00119-X

    Article  CAS  Google Scholar 

  16. Luque R, Clark JH, Yoshida K, Gai PL (2009) Efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons®. Chem Commun:5305. https://doi.org/10.1039/b911877b

  17. Hong UG, Lee J, Hwang S, Song IK (2011) Hydrogenation of succinic acid to γ-butyrolactone (GBL) over palladium-alumina composite catalyst prepared by a single-step sol-gel method. Catal Lett 141:332–338. https://doi.org/10.1007/s10562-010-0502-1

    Article  CAS  Google Scholar 

  18. Hong UG, Hwang S, Seo JG et al (2011) Hydrogenation of succinic acid to γ-butyrolactone (GBL) over palladium catalyst supported on alumina xerogel: effect of acid density of the catalyst. J Ind Eng Chem 17:316–320. https://doi.org/10.1016/j.jiec.2011.02.030

    Article  CAS  Google Scholar 

  19. Chung SH, Park YM, Kim MS, Lee KY (2012) The effect of textural properties on the hydrogenation of succinic acid using palladium incorporated mesoporous supports. Catal Today 185:205–210. https://doi.org/10.1016/j.cattod.2011.08.011

    Article  CAS  Google Scholar 

  20. Hong UG, Park HW, Lee J et al (2012) Hydrogenation of succinic acid to tetrahydrofuran (THF) over rhenium catalyst supported on H 2SO 4-treated mesoporous carbon. Appl Catal A Gen 415–416:141–148. https://doi.org/10.1016/j.apcata.2011.12.022

    Article  CAS  Google Scholar 

  21. Ly BK, Minh DP, Pinel C et al (2012) Effect of addition mode of Re in bimetallic Pd-Re/TiO 2 catalysts upon the selective aqueous-phase hydrogenation of succinic acid to 1,4-butanediol. Top Catal 55:466–473. https://doi.org/10.1007/s11244-012-9813-3

    Article  CAS  Google Scholar 

  22. Hong UG, Kim JK, Lee J et al (2014) Hydrogenation of succinic acid to tetrahydrofuran over ruthenium-carbon composite catalysts: effect of HCl concentration in the preparation of the catalysts. J Ind Eng Chem 20:3834–3840. https://doi.org/10.1016/j.jiec.2013.12.087

    Article  CAS  Google Scholar 

  23. Kang KH, Hong UG, Jun JO et al (2014) Hydrogenation of succinic acid to γ-butyrolactone and 1,4-butanediol over mesoporous rhenium-copper-carbon composite catalyst. J Mol Catal A Chem 395:234–242. https://doi.org/10.1016/j.molcata.2014.08.032

    Article  CAS  Google Scholar 

  24. Shao Z, Li C, Di X et al (2014) Aqueous-phase hydrogenation of succinic acid to γ-butyrolactone and tetrahydrofuran over Pd/C, Re/C, and Pd-Re/C catalysts. Ind Eng Chem Res 53:9638–9645. https://doi.org/10.1021/ie5006405

    Article  CAS  Google Scholar 

  25. Di X, Shao Z, Li C et al (2015) Hydrogenation of succinic acid over supported rhenium catalysts prepared by the microwave-assisted thermolytic method. Cat Sci Technol 5:2441–2448. https://doi.org/10.1039/c5cy00004a

    Article  CAS  Google Scholar 

  26. Ly BK, Tapin B, Aouine M et al (2015) Insights into the oxidation state and location of rhenium in Re-Pd/TiO2 catalysts for aqueous-phase selective hydrogenation of succinic acid to 1,4-Butanediol as a function of palladium and rhenium deposition methods. ChemCatChem 7:2161–2178. https://doi.org/10.1002/cctc.201500197

    Article  CAS  Google Scholar 

  27. Kang KH, Han SJ, Lee JW et al (2016) Effect of boron content on 1,4-butanediol production by hydrogenation of succinic acid over Re-Ru/BMC (boron-modified mesoporous carbon) catalysts. Appl Catal A Gen 524:206–213. https://doi.org/10.1016/j.apcata.2016.06.037

    Article  CAS  Google Scholar 

  28. Takeda Y, Tamura M, Nakagawa Y et al (2016) Hydrogenation of dicarboxylic acids to diols over Re-Pd catalysts. Cat Sci Technol 6:5668–5683. https://doi.org/10.1039/c6cy00335d

    Article  CAS  Google Scholar 

  29. Zhang C, Chen L, Cheng H et al (2016) Atomically dispersed Pd catalysts for the selective hydrogenation of succinic acid to γ-butyrolactone. Catal Today 276:55–61. https://doi.org/10.1016/j.cattod.2016.01.028

    Article  CAS  Google Scholar 

  30. Di X, Li C, Zhang B et al (2017) Role of Re and Ru in Re-Ru/C bimetallic catalysts for the aqueous hydrogenation of succinic acid. Ind Eng Chem Res 56:4672–4683. https://doi.org/10.1021/acs.iecr.6b04875

    Article  CAS  Google Scholar 

  31. Abou Hamdan M, Loridant S, Jahjah M et al (2019) TiO2-supported molybdenum carbide: an active catalyst for the aqueous phase hydrogenation of succinic acid. Appl Catal A Gen 571:71–81. https://doi.org/10.1016/j.apcata.2018.11.009

    Article  CAS  Google Scholar 

  32. Abou Hamdan M, Lilic A, Vecino-Mantilla M et al (2020) Influence of reduction carburization parameters on the performance of supported molybdenum carbide catalysts in succinic acid hydrogenation. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.0c01934

  33. Keels JM, Chen X, Karakalos S et al (2018) Aqueous-phase hydrogenation of succinic acid using bimetallic Ir-Re/C catalysts prepared by strong electrostatic adsorption. ACS Catal 8:6486–6494. https://doi.org/10.1021/acscatal.8b01006

    Article  CAS  Google Scholar 

  34. Zhang S, Gedalanga PB, Mahendra S (2017) Advances in bioremediation of 1,4-dioxane-contaminated waters. J Environ Manag 204:765–774. https://doi.org/10.1016/j.jenvman.2017.05.033

    Article  CAS  Google Scholar 

  35. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  36. Mishra S, Datta-Gupta A (2018) Experimental design and response surface analysis. Appl Stat Model Data Anal:169–193. https://doi.org/10.1016/b978-0-12-803279-4.00007-9

  37. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  38. Villegas M, Oliveira AL, Bazito RC, Vidinha P (2019) Development of an integrated one-pot process for the production and impregnation of starch aerogels in supercritical carbon dioxide. J Supercrit Fluids 154:104592. https://doi.org/10.1016/j.supflu.2019.104592

    Article  CAS  Google Scholar 

  39. Tapin B, Epron F, Especel C et al (2013) Study of monometallic Pd/TiO2 catalysts for the hydrogenation of succinic acid in aqueous phase. ACS Catal 3:2327–2335. https://doi.org/10.1021/cs400534x

    Article  CAS  Google Scholar 

  40. Pham Minh D, Besson M, Pinel C et al (2010) Aqueous-phase hydrogenation of biomass-based succinic acid to 1,4-butanediol over supported bimetallic catalysts. Top Catal 53:1270–1273. https://doi.org/10.1007/s11244-010-9580-y

    Article  CAS  Google Scholar 

  41. StatSoft Inc (2011) STATISTICA (data analysis software system)

  42. Li Y, Liu H, Ma L, He D (2014) Glycerol hydrogenolysis to propanediols over supported Pd-Re catalysts. RSC Adv 4:5503–5512. https://doi.org/10.1039/c3ra46134c

    Article  CAS  Google Scholar 

  43. Batista J, Pintar A, Mandrino D et al (2001) XPS and TPR examinations of γ-alumina-supported Pd-Cu catalysts. Appl Catal A Gen 206:113–124. https://doi.org/10.1016/S0926-860X(00)00589-5

    Article  CAS  Google Scholar 

  44. Zhu H, Qin Z, Shan W et al (2004) Pd/CeO2-TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents. J Catal 225:267–277. https://doi.org/10.1016/j.jcat.2004.04.006

    Article  CAS  Google Scholar 

  45. Jacobs G, Chaney JA, Patterson PM et al (2004) Fischer-Tropsch synthesis: study of the promotion of Re on the reduction property of Co/Al2O3 catalysts by in situ EXAFS/XANES of Co K and Re LIII edges and XPS. Appl Catal A Gen 264:203–212. https://doi.org/10.1016/j.apcata.2003.12.049

    Article  CAS  Google Scholar 

  46. Gothe ML, Pérez-Sanz FJ, Braga AH et al (2020) Selective CO2 hydrogenation into methanol in a supercritical flow process. J CO2 Util 40:101195. https://doi.org/10.1016/j.jcou.2020.101195

    Article  CAS  Google Scholar 

  47. Malinowski A, Juszczyk W, Bonarowska M et al (1998) Pd-Re/Al2O3: characterization and catalytic activity in hydrodechlorination of CCl2F2. J Catal 177:153–163. https://doi.org/10.1006/jcat.1998.2062

    Article  CAS  Google Scholar 

  48. Amada Y, Shinmi Y, Koso S et al (2011) Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir-ReOx/SiO2 catalyst. Appl Catal B Environ 105:117–127. https://doi.org/10.1016/j.apcatb.2011.04.001

    Article  CAS  Google Scholar 

  49. Yang J, Li S, Zhang L et al (2017) Hydrodeoxygenation of furans over Pd-FeOx/SiO2 catalyst under atmospheric pressure. Appl Catal B Environ 201:266–277. https://doi.org/10.1016/j.apcatb.2016.08.045

    Article  CAS  Google Scholar 

  50. Takeda Y, Tamura M, Nakagawa Y et al (2015) Characterization of Re-Pd/SiO2 catalysts for hydrogenation of stearic acid. ACS Catal 5:7034–7047. https://doi.org/10.1021/acscatal.5b01054

    Article  CAS  Google Scholar 

  51. Thompson ST, Lamb HH (2016) Palladium-rhenium catalysts for selective hydrogenation of furfural: evidence for an optimum surface composition. ACS Catal 6:7438–7447. https://doi.org/10.1021/acscatal.6b01398

    Article  CAS  Google Scholar 

  52. Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075. https://doi.org/10.1039/c2cs35188a

    Article  PubMed  CAS  Google Scholar 

  53. Pritchard J, Filonenko GA, Van Putten R et al (2015) Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. Chem Soc Rev 44:3808–3833. https://doi.org/10.1039/c5cs00038f

    Article  PubMed  CAS  Google Scholar 

  54. Baranenko VI, Kirov VS (1989) Solubility of hydrogen in water in a broad temperature and pressure range. Sov At Energy 66:30–34. https://doi.org/10.1007/BF01121069

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of FAPESP through project 2015/14905-0 and of FAPESP and SHELL Brazil through the ‘Research Centre for Gas Innovation – RCGI’ (FAPESP Proc. 2014/50279-4), hosted by the University of Sao Paulo. Maitê Gothe also acknowledges RCGI for her PhD grant. The authors also acknowledge the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. Adolfo Figueredo acknowledges CAPES (88882.375717/2019-01) for his PhD grant and PROCAD for support financial. Carolina Costa acknowledges CNPQ (130638/2018-8) for her MSc grant. We thank Prof. Renato V. Gonçalves for the contribution on Rietveld refinement and discussion on XRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Vidinha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 902 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueredo, A.L., Costa, C.S., Gothe, M.L. et al. Process Optimization for a Sustainable and Selective Conversion of Fumaric Acid into γ-Butyrolactone Over Pd-Re/SiO2. Catal Lett 151, 1821–1833 (2021). https://doi.org/10.1007/s10562-020-03433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03433-3

Keywords

Navigation